Multiple Instance Learning with Manifold Bags

Boris Babenko, Nakul Verma, Piotr Dollar, Serge Belongie

ICML 2011
Supervised Learning

• (example, label) pairs provided during training

(⃣, +) (⃣, +) (⃣, -) (⃣, -)
Multiple Instance Learning (MIL)

• (set of examples, label) pairs provided
• MIL lingo: set of examples = bag of instances
• Learner does not see instance labels
• Bag labeled positive if at least one instance in bag is positive

[Dietterich et al. ‘97]
MIL Example: Face Detection

- **Instance**: image patch
- **Instance Label**: is face?
- **Bag**: whole image
- **Bag Label**: contains face?

[Andrews et al. ’02, Viola et al. ’05, Dollar et al. 08, Galleguillos et al. 08]
PAC Analysis of MIL

• **Bound bag generalization** error in terms of empirical error

• Data model (bottom up)
 - Draw r instances and their labels from fixed distribution \mathcal{D}_I
 - Create bag from instances, determine its label (max of instance labels)
 - Return bag & bag label to learner
Data Model

Bag 1: positive

\(I \) (instance space)

- Red: Negative instance
- Green: Positive instance
Data Model

Bag 2: positive

- Negative instance
- Positive instance
Data Model

- **Bag 3: negative**

![Graph showing data points for Bag 3: negative. The graph plots instances on a 2D plane with one axis labeled as I. Points are marked as red circles for negative instances and green stars for positive instances.](image-url)
PAC Analysis of MIL

• Blum & Kalai (1998)
 ▪ If: access to noise tolerant instance learner, instances drawn independently
 ▪ Then: bag sample complexity \textit{linear} in r

• Sabato & Tishby (2009)
 ▪ If: can minimize empirical error on bags
 ▪ Then: bag sample complexity \textit{logarithmic} in r
MIL Applications

• Recently MIL has become popular in applied areas (vision, audio, etc)
• Disconnect between theory and many of these applications
MIL Example: Face Detection (Images)

$+ \rightarrow \{ \text{Face images} \ldots \}$

$- \rightarrow \{ \text{Non-face images} \ldots \}$

Bag: whole image
Instance: image patch

[Andrews et al. ’02, Viola et al. ’05, Dollar et al. 08, Galleguillos et al. 08]
MIL Example: Phoneme Detection (Audio)

Detecting ‘sh’ phoneme

+ “machine”

− “learning”

Bag: audio of word
Instance: audio clip

[Mandel et al. ‘08]
MIL Example: Event Detection (Video)

Bag: video
Instance: few frames

Observations for these applications

• Top down process: draw entire bag from a bag distribution, then get instances
• Instances of a bag lie on a manifold
Manifold Bags

\mathbf{b}_1

\mathbf{b}_2

Negative region Positive region
Manifold Bags

• For such problems:
 - Existing analysis not appropriate because number of instances is infinite
 - Expect sample complexity to scale with manifold parameters (curvature, dimension, volume, etc)
Manifold Bags: Formulation

• Manifold bag b drawn from bag distribution \mathcal{D}_B

• Instance hypotheses:
 \[h \in \mathcal{H}, \quad h : \mathcal{I} \to \{0, 1\} \]

• Corresponding bag hypotheses:
 \[\overline{h} \in \overline{\mathcal{H}}, \quad \overline{h} : \mathcal{B} \to \{0, 1\} \]

 \[\overline{h}(b) \overset{\text{def}}{=} \max_{x \in b} h(x) \]
Typical Route: VC Dimension

- Error Bound:

\[e \leq \hat{e} + O\left(\sqrt{\frac{\text{VC}(\mathcal{H})}{m}}\right) \]
Typical Route: VC Dimension

• Error Bound:

\[e \leq \hat{e} + O\left(\sqrt{\frac{VC(H)}{m}}\right) \]

- generalization error
- empirical error
- # of training bags
Typical Route: VC Dimension

- Error Bound:

\[e \leq \hat{e} + O\left(\sqrt{\frac{VC(H)}{m}}\right) \]

VC Dimension of bag hypothesis class
Relating $\overline{\mathcal{H}}$ to \mathcal{H}

- We do have a handle on $VC(\mathcal{H})$
- For finite sized bags, Sabato & Tishby:
 \[VC(\overline{\mathcal{H}}) \leq VC(\mathcal{H}) \log(r) \]
- Question: can we assume manifold bags are smooth and use a covering argument?
VC of bag hypotheses is unbounded!

• Let \mathcal{H} be half spaces (hyperplanes)
• For arbitrarily smooth bags can always construct any number of bags s.t. all possible labelings achieved by $\overline{\mathcal{H}}$
• Thus, $VC(\overline{\mathcal{H}})$ unbounded!
Example (3 bags)

Want labeling (101)
Example (3 bags)

\[h \in \mathcal{H} \]

Achieves labeling \((101)\)
Example (3 bags)

All possible labelings
Issue

• Bag hypothesis class too powerful
 ▪ For positive bag, need to only classify 1 instance as positive
 ▪ Infinitely many instances -> too much flexibility for bag hypothesis

• Would like to ensure a non-negligible portion of positive bags is labeled positive
Solution

• Switch to real-valued hypothesis class
 • \(h_r \in \mathcal{H}_r : \mathcal{I} \rightarrow [0, 1] \)
 • corresponding bag hypothesis also real-valued
 • binary label via thresholding
 • true labels still binary

• Require that \(h_r \) is (lipschitz) smooth

• Incorporate a notion of margin
Example (3 bags)

h ∈ H

small margin
Fat-shattering Dimension

- $F_\gamma(\overline{\mathcal{H}}_r) =$ “Fat-shattering” dimension of real-valued hypothesis class
 - Analogous to VC dimension
- Relates **generalization** error to **empirical** error at margin γ
 - i.e. not only does binary label have to be correct, margin has to be $\geq \gamma$
Fat-shattering of Manifold Bags

- Error Bound:

\[e \leq \hat{e}_\gamma + O \left(\sqrt{\frac{F_{\gamma/8}(\mathcal{H}_r)}{m}} \right) \]
Fat-shattering of Manifold Bags

• Error Bound:

\[e \leq \hat{e}_\gamma + O\left(\frac{\sqrt{F_{\gamma/8}(H_r)} \gamma}{m}\right) \]

- Generalization error
- Empirical error at margin \(\gamma \)
- \(m \): # of training bags
Fat-shattering of Manifold Bags

- Error Bound:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{F_{\gamma/8}(\overline{H}_r)}{m}}\right) \]

fat shattering of bag hypothesis class
Fat-shattering of Manifold Bags

- Bound $F_\gamma(\overline{\mathcal{H}}_r)$ in terms of $F_\gamma(\mathcal{H}_r)$
 - Use covering arguments – approximate manifold with finite number of points
 - Analogous to Sabato & Tishby’s analysis of finite size bags
• With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(H)}{m} \log^2 \left(\frac{V_m}{\gamma^2 \kappa^n}\right)}\right) \]
• With high probability:

$$e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_\gamma / 16(\mathcal{H})}{m}} \log^2 \left(\frac{V_m}{\gamma^2 \kappa^n}\right)\right)$$

- **generalization error**
- **empirical error at margin γ**
- **complexity term**
Error Bound

• With high probability:

$$e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m}} \log^2 \left(\frac{V m}{\gamma^2 \kappa^n} \right)\right)$$

fat shattering of instance hypothesis class
Error Bound

• With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(H)}{m}} \log^2 \left(\frac{V m}{\gamma^2 \kappa n} \right) \right) \]

number of training bags
With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2 \left(\frac{V m}{\gamma^2 \kappa^n}\right)}\right) \]
Error Bound

• With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(H)}{m}} \log^2 \left(\frac{V m}{\gamma^2 \kappa n}\right)\right) \]
• With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m}} \log^2 \left(\frac{Vm}{\gamma^2 \kappa n}\right)\right) \]

term depends (inversely) on smoothness of manifolds & smoothness of instance hypothesis class
Error Bound

• With high probability:

\[e \leq \hat{e}_\gamma + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2 \left(\frac{V m}{\gamma^2 \kappa n} \right)}\right) \]

• Obvious strategy for learner:
 - Minimize empirical error & maximize margin
 - This is what most MIL algorithms already do
Learning from Queried Instances

• Previous result assumes learner has access \textbf{entire} manifold bag

• In practice learner will only access small number of instances (\(\rho \))

\[
\text{\{\hspace{1cm} \}}
\]

• Not enough instances -> might not draw a pos. instance from pos. bag
Learning from Queried Instances

- Bound

\[e \leq \hat{e}_\gamma + O \left(\sqrt{\frac{n^2 F_{\gamma/16}}{m} \log^2 \left(\frac{V m}{\gamma^2 \kappa^n} \right)} \right) \]

holds with failure probability increased by \(\delta \) if

\[\rho \geq \Omega \left(\left(\frac{V}{\kappa^n} \right) \left(n + \ln \left(\frac{m V}{\kappa^n \delta} \right) \right) \right) \]
Take-home Message

• Increasing m reduces complexity term
• Increasing ρ reduces failure probability
 ▪ Seems to contradict previous results (smaller bag size r is better)
 ▪ Important difference between r and ρ!
 ▪ If ρ is too small we may only get negative instances from a positive bag

• Increasing m requires extra labels, increasing ρ does not
Iterative Querying Heuristic (IQH)

- Problem: want many instances/bag, but have computational limits
- Heuristic solution:
 - Grab small number of instances/bag, run standard MIL algorithm
 - Query more instances from each bag, only keep the ones that get high score from current classifier
- At each iteration, train with small # of instances
Experiments

• Synthetic Data (will skip in interest of time)
• Real Data
 ▪ INRIA Heads (images)
 ▪ TIMIT Phonemes (audio)
INRIA Heads

pad=16

pad=32

[Dalal et al. ‘05]
TIMIT Phonemes

“machine”

“learning”

[Garofolo et al., ‘93]
Padding (volume)

INRIA Heads

- Pad = 0.4
- Pad = 0.8
- Pad = 1.6
- Pad = 3.2

Number of training bags (m)

Bag error

TIMIT Phonemes

- Pad = 0.8
- Pad = 1.6
- Pad = 3.2
- Pad = 6.4

Number of training bags (m)

Bag error
Number of Instances (ρ)

INRIA Heads

TIMIT Phonemes
INRIA Heads

TIMIT Phonemes
Conclusion

- For many MIL problems, bags modeled better as **manifolds**
- PAC Bounds depend on **manifold properties**
- Need **many instances** per manifold bag
- **Iterative** approach works well in practice, while keeping comp. requirements low
- Further algorithmic development taking advantage of manifold would be interesting
Thanks

• Happy to take questions!
Why not learn directly over bags?

• Some MIL approaches do this
 ▪ Wang & Zucker ‘00, Gartner et al. ‘02
• In practice, instance classifier is desirable
• Consider image application (face detection)
 ▪ Face can be anywhere in image
 ▪ Need features that are extremely robust
Why not instance error?

• Consider this example:

• In practice instance error tends to be low (if bag error is low)
Doesn’t VC have lower bound?

- Subtle issue with FAT bounds
 - If the distribution is terrible, \(\hat{e}_\gamma \) will be high
- Consider SVMs with RBF kernel
 - VC dimension of linear separator is n+1
 - FAT dimension only depends on margin (Bartlett & Shawe-Taylor, 02)
Aren’t there finite number of image patches?

• We are **modeling** the data as a manifold
• In practice, everything gets discretized
• Actual number of instances (e.g. image patches with any scale/orientation) may be huge – existing bounds still not appropriate