Linear Dimension Reduction (in L_2)
Linear Dimension Reduction: $\mathbb{R}^D \rightarrow \mathbb{R}^d$

Goal: Find a low-dim. linear map that preserves the relevant information. ie find a $d \times D$ matrix M

Some canonical techniques...

- RP (Random Projections)
- PCA (Principal Component Analysis)
- LDA (Linear Discriminate Analysis)
- MDS (Multi-dimensional Scaling)
- ICA/BSS (Independent Component Analysis/Blind Source Separation)
- CCA (Canonical Correlation Analysis)
- DML (Distance Metric Learning)
- DL (Dictionary Learning)
- FA (Factor Analysis)
- NMF/MF ((Non-negative) Matrix Factorization)

• Application dependent
• Different definitions yield different techniques
Random Projections (RP)

Goal: Find a low-dim. linear map that preserves...
the worst case interpoint Euclidean distances by a factor of $(1 \pm \varepsilon)$

Solution: M with each entry $N(0,1/d)$

Reasoning: JL lemma.

Given $\varepsilon > 0$, pick any $d = \Omega(\log n / \varepsilon^2)$
Given some d, we have $\varepsilon = O(\log n / d^{1/2})$
Principal Component Analysis (PCA)

Goal: Find a low-dim. **subspace** that minimizes...
the average squared residuals of the given datapoints

Define \(\Pi^d : \mathbb{R}^D \to \mathbb{R}^D \) \textit{d-dimensional orthogonal linear projector}.

minimize \(\Pi^d \frac{1}{n} \sum_{i=1}^{n} \left\| \vec{x}_i - \Pi^d(\vec{x}_i) \right\|^2 \)

The problem is equivalent to

\[
\arg \min \limits_{Q \in \mathbb{R}^{D \times d}, Q^T Q = I} \frac{1}{n} \sum_{i=1}^{n} \left\| \vec{x}_i - QQ^T \vec{x}_i \right\|^2 = \arg \max \limits_{Q \in \mathbb{R}^{D \times d}, Q^T Q = I} \text{tr} \left(Q^T \left(\frac{1}{n} XX^T \right) Q \right)
\]

\textit{Solution: Basically is the top} \textit{d} \textit{eigenvectors of the matrix} \(XX^T \)!
Fisher’s Linear Discriminant Analysis (LDA)

Goal: Find a low-dim. map that improves classification accuracy!

Motivation:
PCA minimizes reconstruction error \(\Rightarrow\) good classification accuracy

How can we get classification direction?

Simple idea: pick the direction \(w\) that separates the class conditional means as much as possible!

\[
\begin{align*}
\mu_a &:= \frac{1}{|C_a|} \sum_{x \in C_a} x \\
\mu_b &:= \frac{1}{|C_b|} \sum_{x \in C_b} x \\
\bar{\mu}_a &:= w^T \mu_a \\
\bar{\mu}_b &:= w^T \mu_b \\
L(w) &= \left| \bar{\mu}_b - \bar{\mu}_a \right| \\
\max_{w, \|w\|=1} L(w) &= \left| \bar{\mu}_b - \bar{\mu}_a \right| \\
w^* &= \frac{\mu_a - \mu_b}{\|\mu_a - \mu_b\|}
\end{align*}
\]
Linear Discriminant Analysis (LDA)

So, the direction induced by class conditional means solves simple issues but may still not be the best direction.

Fix: need to take the projected class conditional spread into account!
So how can we get this intended classification direction?

Want:
- Projected class means as far as possible
- Projected class variance as small possible

\[\mu_a := \frac{1}{|C_a|} \sum_{x \in C_a} x \quad \mu_b := \frac{1}{|C_b|} \sum_{x \in C_b} x \]

\[\bar{\mu}_a := w^T \mu_a \quad \bar{\mu}_b := w^T \mu_b \]

\[S_a^2 := \sum_{\bar{x} \in C_a} (\bar{x} - \bar{\mu}_a)^2 \quad S_b^2 := \sum_{\bar{x} \in C_b} (\bar{x} - \bar{\mu}_b)^2 \]

\[\max_w L(w) = \frac{(\bar{\mu}_b - \bar{\mu}_a)^2}{S_a^2 + S_b^2} \]

Let’s study this optimization in more detail...
Linear Discriminant Analysis (LDA)

\[
\max_w L(w) = \frac{(\bar{\mu}_b - \bar{\mu}_a)^2}{\bar{S}_a^2 + \bar{S}_b^2}
\]

Consider the terms in the denominator...

\[
\bar{S}_a^2 = \sum_{\bar{x} \in C_a} (\bar{x} - \bar{\mu}_a)^2 = \sum_{x \in C_a} (w^T (x - \mu_a))^2
\]

\[
= w^T \left(\sum_{x \in C_a} (x - \mu_a)(x - \mu_a)^T \right) w = w^T S_a w
\]

ie, scatter in class “a”

So

\[
\bar{S}_a^2 + \bar{S}_b^2 = w^T (S_a + S_b) w
\]

\[=: S_W \text{ (within class scatter)}
\]
Linear Discriminant Analysis (LDA)

\[
\max_w L(w) = \frac{(\bar{\mu}_b - \bar{\mu}_a)^2}{\bar{S}_a^2 + \bar{S}_b^2}
\]

Consider the terms in the numerator...

\[
(\bar{\mu}_a - \bar{\mu}_b)^2 = (w^T (\mu_a - \mu_b))^2
\]

\[
= w^T \left((\mu_a - \mu_b)(\mu_a - \mu_b)^T \right) w
\]

\text{ie, scatter across classes}

\text{=: } S_B \text{ (between class scatter)}

\[
\mu_a := \frac{1}{|C_a|} \sum_{x \in C_a} x
\]

\[
\mu_b := \frac{1}{|C_b|} \sum_{x \in C_b} x
\]

\[
\bar{\mu}_a := w^T \mu_a
\]

\[
\bar{\mu}_b := w^T \mu_b
\]

\[
\bar{S}_a^2 := \sum_{\bar{x} \in C_a} (\bar{x} - \bar{\mu}_a)^2
\]

\[
\bar{S}_b^2 := \sum_{\bar{x} \in C_b} (\bar{x} - \bar{\mu}_b)^2
\]
Linear Discriminant Analysis (LDA)

$$\max_w L(w) = \frac{(\mu_b - \mu_a)^2}{\bar{S}_a^2 + \bar{S}_b^2} = \frac{w^T S_B w}{w^T S_W w}$$

So, how do we optimize?

$$0 = \frac{\partial}{\partial w} L(w) = (w^T S_W w)(2S_B w) - (w^T S_B w)(2S_W w)$$

Divide by $2w^T S_W w$

$$S_B w - \frac{w^T S_B w}{w^T S_W w} (S_W w) = 0$$

$$= L(w)$$

So, at optima

$$S_B w = L(w)(S_W w)$$

$$\Leftrightarrow (S_B S_W^{-1})w = L(w)w$$

Therefore, optimal w is the maximum eigenvalue of $S_B S_W^{-1}$

Multiclass case (for j classes):

$$S_W = \sum_j S_j^2; \quad S_B = \sum_j (\mu_j - \mu)(\mu_j - \mu)^T$$
Goal: Find a linear map that improves... classification accuracy!

Idea: Find a linear map L that brings data from same class closer together than different class (this would help improve classification via distance-based methods!)

Also called Mahalanobis metric learning

If L is applied to the input data, what would be the resulting distance?

$$
\rho(x_i, x_j; L) = \|Lx_i - Lx_j\| = \left[(x_i - x_j)^T L^T L (x_i - x_j)\right]^{1/2}
$$

So, what L would be good for distance-based classification?
Distance Metric Learning

Want:

Distance metric: \(\rho(x_i, x_j; L) \)

such that: data samples from \textbf{same class} yield \textbf{small values}

data samples from \textbf{different class} yield \textbf{large values}

One way to solve it mathematically:

Create \textbf{two} sets:
Similar set \[S := \{(x_i, x_j) \mid y_i = y_j\} \quad i, j = 1, \ldots, n \]

Dissimilar set \[D := \{(x_i, x_j) \mid y_i \neq y_j\} \]

Define a \textbf{cost function}:

\[
\Psi(L) := \lambda \sum_{(x_i, x_j) \in S} \rho^2(x_i, x_j; L) - (1 - \lambda) \sum_{(x_i, x_j) \in D} \rho^2(x_i, x_j; L)
\]

Minimize \(\Psi \) \textbf{w.r.t.} \(L \)

Several convex variants exist in the literature (e.g. MMC, LMNN, ITML)
Mahalanobis Metric for Clustering (MMC):

\[
\text{maximize}_M \sum_{(x,x') \in D} \rho_M^2(x, x') \\
\text{s.t.} \sum_{(x,x') \in S} \rho_M^2(x, x') \leq 1
\]

\[\text{define } M = L^T L\]

\[M \in \text{PSD}\]

\[\text{rank}(M) \leq k\]

\[L_0\text{-type non-convex constraint can relax it to } \text{tr}(M) \leq k\]
Distance Metric Learning

Large Margin Nearest Neighbor (LMNN):

\[
\Psi_{\text{pull}}(M) = \sum_{i,j(i)} \rho^2_M(x_i, x_j)
\]

\[
\Psi_{\text{push}}(M) = \sum_{i,j(i),l(i,j)} \left[1 + \rho^2_M(x_i, x_j) - \rho^2_M(x_i, x_l) \right]_+
\]

\[
\Psi(M) = \lambda \Psi_{\text{pull}}(M) + (1 - \lambda) \Psi_{\text{push}}(M)
\]

[Weinberger and Saul '09]

Point
True neighbor \(j(i) \)
Imposter \(l(i,j) \)
LMNN Performance

Query

After learning

Original metric
Multi-Dimensional Scaling (MDS)

Goal: Find a Euclidean representation of data given only interpoint distances

Given distances ρ_{ij} between (total n) objects, find vectors $x_1, \ldots, x_n \in \mathbb{R}^D$ s.t.

$$\|x_i - x_j\| = \rho_{ij}$$

Classical MDS
Deals with the case when an isometric embedding does exist.

Metric MDS
Deals with the case when an isometric embedding does not exist.

Non-metric MDS
Deals with the case when one only wants to preserve distance order.
Classical MDS

Let D be an $n \times n$ matrix s.t. $D_{ij} = \rho_{ij}$

If an isometric embedding exists, then

- One can show that
 \[G = -\frac{1}{2} H^T D H \]
 is PSD

- Which can then be factorized to construct a Euclidean embedding!

 How? See hwk 😊
Metric and non-metric MDS

Metric MDS – (when an isometric embedding does not exist)

There is no direct way; one can solve for the following optimization

\[
\min_{x_1, \ldots, x_n} \sum_{i < j} \left(\|x_i - x_j\| - \rho_{ij} \right)^2
\]

\[
\text{s.t. } \sum_i x_i = 0
\]

Stress function

Non-Metric MDS – (only want to preserve distance order)

\[
\min_{x_1, \ldots, x_n} \sum_{i < j} \left(g(\|x_i - x_j\|) - \rho_{ij} \right)^2
\]

\[
\text{s.t. } \sum_i x_i = 0
\]

Can do isotonic regression for monotonic \(g \)
Often the collected data is a mix from multiple sources and a practitioners are interested in extracting the clean signal of the individual sources.

Motivating examples:

The cocktail party problem
- Multiple conversations are happening in a crowded room
- Microphones record a mix of conversations
- Goal is to separate out the conversations

EEG recordings
- Non-invasive way of capturing brain activity
- Sensors pick up a mix of activity signals
- Isolate the activity signals
Blind Source Separation (BSS)

The Data Model:

\[X = MS \]

- Goal: given X, recover S (without knowing M)

\[\text{Observed (mixed) data} = \text{unknown/hidden mixing} \]

\[X = MS \]

issue: under-constrained problem, ie multiple plausible solutions. Which one is “correct”??
Blind Source Separation (BSS)

\[X = MS \]

Assumption:
- The source signals \(S \) (rows) are **generated independently** from each other.

The matrix \(M \) simply mixes these independent signals linearly to generate \(X \).

Then, what can we say about \(X \) (compared to \(S \))?

Recall: Central Limit Theorem – a linear combination of independent random variables (under mild conditions) essentially looks like a Gaussian!

- \(X \) is **more gaussian-like** than \(S \)
- Modified goal: Find entries of \(S \) that are **least gaussian-like**

How to check how Gaussian-like is a distribution?
Blind Source Separation (BSS)

How to measure how “Gaussian-like” a distribution is?

- Kurtosis-based Methods

Kurtosis: fourth (standardized) moment of a distribution

\[\text{Kurt}(X) = E\left[\left(\frac{X-\mu}{\sigma}\right)^4 \right] \]

- For a Gaussian distribution, kurtosis = 3
- Sub-gaussian (‘light’ tailed), kurtosis < 3 platykurtic
- Super-gaussian (‘heavy’ tailed), kurtosis > 3 leptokurtic

If we model the \(i \)th signal \(S_i = W_i^T X \)

\[\max_{W_i} \text{Kurt}(W_i^T X) \]

s.t. \(\text{Var}[W_i^T X] = 1; \ E[W_i^T X] = 0 \)
How to measure how “Gaussian-like” a distribution is?

• Entropy-based Methods
 Entropy: measure of uncertainty in a distribution
 \[H(X) = - E_x \left[\log(p(x)) \right] \]

 Fact: among all distributions with a fixed variance, Gaussian distribution has the highest entropy!

if we model the \(i^{th} \) signal \(S_i = W_i^T X \)

\[
\max_{W_i} - H(W_i^T X) \\
s.t. \quad \text{Var}[W_i^T X] = 1; \quad E[W_i^T X] = 0
\]
Blind Source Separation (BSS)

Can we make source signals “independent” directly?

• Mutual Information-based Methods
 Mutual info: amount of info a variable contains about the other
 \[I(X;Y) = E_{x,y} \left[\log \left(\frac{p(x,y)}{p(x)p(y)} \right) \right] \]

 if we model the \(i \text{th} \) signal \(S_i = W_i^T X \)

 \[\min \sum_{i<j} I(W_i^T X; W_j^T X) \]
Blind Source Separation (BSS)

Application (cocktail party problem)

- Audio clip

 mic 1

 unmixed source 1

 mic 2

 unmixed source 2
Motivation: the Netflix problem

Given n users and m movies, with some users have rated some of the movies; the goal is to predict the ratings for all movies for all the users.

Data Model:

$$R_{ij} = U_i \cdot V_j$$
Matrix Factorization

\[
\min_{U, V} \sum_{R_{ij} \text{ observed}} (R_{ij} - U_i \cdot V_j)^2
\]

We can optimize using alternating minimization

Equivalent to the probabilistic model where the ratings are generated as

\[
R_{ij} = U_i \cdot V_j + \varepsilon_{ij} \quad \varepsilon \sim N(0, \sigma^2)
\]

It is possible to add priors to U and V, which would be helpful for certain applications

Important variations:
Non-negative matrix factorization
What can be done when the data comes in “multiple views”
Same observation – different set of measurements are made

Examples:
- Social interaction between individuals
 - Video recording of the interaction
 - Audio recording of the interaction
 - Brain activity recording of the interaction

Ecology – want to study how abundance of species relates to environmental variables
- Data on how species are distributed in various sites
- Data on what environmental variables are there for the same sites

How can we combine multiple views for effective learning?
Canonical Correlations Analysis (CCA)

Canonical correlation analysis (CCA):
- A way of measuring the linear relationship between two variables.
- Finds a projection (linear map) with maximizes the relationship between the variables, which can then be used for data analysis.

Let X and Y be the data in two different “views”, want to find W_x and W_y which maximally aligns (correlates) the data.

Let $a = X^T W_x$; $b = Y^T W_y$ then maximize the correlation between a and b

\[
\max_{W_x, W_y} \frac{E(ab)}{\sqrt{E[a^2]E[b^2]}} = \frac{E(W_x^T X Y^T W_y)}{\sqrt{E[W_x^T X X^T W_x]E[W_y^T Y Y^T W_y]}} \cdot \frac{E(W_x^T C_{xx} W_x)}{\sqrt{E[W_x^T C_{xx}^T W_x]E[W_y^T C_{yy} W_y]}}
\]

Can be solved via eigendecomposition
Canonical Correlations Analysis (CCA)

Ecology application