Representations
Representations

What?
• Given data (in certain representation), produce a representation which provides a better understanding of the data

Why?
• Several ML models require data in a specific representation to work well
 Usually \mathbb{R}^d, sometimes as a similarity function,
 occasionally graphs, rarely as curved spaces

• Enhance the signal in data
 Discover underlying structure, suppress noise

• Improve computational efficiency and decrease space usage
 Dimensionality reduction, can use simpler models
Dimension Reduction: A Successful Example
Any kind of data processing results in information loss.

Theorem (Data Processing Inequality): Suppose $X \rightarrow Y \rightarrow Z$, then $I(X;Y) \geq I(X;Z)$

No clever manipulation of the data (deterministic or randomized) can improve inference or provide more information about the underlying process X than Y itself.
Data Processing Inequality: Suppose $X \rightarrow Y \rightarrow Z$, then $I(X;Y) \geq I(X;Z)$

Proof: Consider $I(X;(Y,Z)) = H(X) - H(X|YZ)$

$$= H(X) - H(X|Z) + H(X|Z) - H(X|YZ)$$

$$= I(X;Z) + I(X;Y|Z) \geq 0$$

$$= I(X;Y) + I(X;Z|Y) = 0$$

[b/c of the Markovian property $X \perp Z | Y$]

The theorem follows.
Data Processing Inequality: If $X \rightarrow Y \rightarrow Z$, then $I(X;Y) \geq I(X;Z)$

This seems like bad news:
Any processing/re-representation of data can only result in information loss about the underlying process.

Catch:
If we are smart about our processing, we can ensure that we retain important aspects of data that are useful for our understanding of the underlying process, and lose all the frivolous/uninteresting information.

Example:
Suppose we want a representation for effective nearest neighbors, then we only need to retain ordinal information (a is closer to b than c)
Metric Embeddings
A Motivating Example

Given a data in a ‘dissimilarity between objects’ form

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

How can we come up a vectoral representation, which respects the relations?
- To gain better understanding of the relationships between data
- If we embed the data in (\mathbb{R}^d, L_2) we can apply off-the-shelf models.
Metric Embeddings

Goal: Given a metric space \((X, \rho)\) want to embed it in a normed space \((\mathbb{R}^d, L_p)\).

Measuring the quality of an embedding:

Given two metric spaces \((X, \rho)\) and \((Y, \sigma)\). A mapping \(f : X \rightarrow Y\) is called a **D-embedding** of \(X\) into \(Y\) (for \(D \geq 1\)) if there exists an \(r > 0\) s.t. for all \(x, x' \in X\),

\[
 r \cdot \rho(x, x') \leq \sigma(f(x), f(x')) \leq D \cdot r \cdot \rho(x, x')
\]

- \(D\) is called the **distortion** of the embedding \(f\)
- If \(D = 1\), then \(f\) is **distance-preserving** and thus called **isometric** (typically \(r=1\))
- If \(D \geq 1\), and \(r \leq (1/D)\), then \(f\) is a **contraction**

Why normed spaces?
- easier to deal with
- we have a better understanding
Embeddings into L_∞

Theorem (Fréchet): An n-point metric space (X, ρ) can be isometrically embedded into L^n_∞

Proof:
Consider the mapping

$$f(x) = \begin{bmatrix} \rho(x, x_1) \\ \rho(x, x_2) \\ \vdots \\ \rho(x, x_n) \end{bmatrix}$$

Observation:
- f is a contraction, ie $\forall u, v \in X$, $\|f(u) - f(v)\|_{L^n_\infty} \leq \rho(u, v)$
 - Why? By triangle inequality $\forall u, v, x_i \in X$, $\rho(u, x_i) - \rho(v, x_i) \leq \rho(u, v)$ in particular, $
 \max_i |\rho(u, x_i) - \rho(v, x_i)| \leq \rho(u, v)$
 - $\|f(u) - f(v)\|_{L^n_\infty} \leq \rho(u, v)$

- $\forall u, v \in X$, $\exists i$ s.t. $\rho(u, v) = (f(u) - f(v))_i$
 - Why?
 For row i corresponding to v
 $$(f(u) - f(v))_i = \rho(u, v)$$
Fréchet Embedding

Theorem (Fréchet): An n-point metric space (X, ρ) can be **isometrically** embedded into L^n_{∞}

Proof:
Consider the mapping

$$f(x) = \begin{bmatrix} \rho(x, x_1) \\ \rho(x, x_2) \\ \vdots \\ \rho(x, x_n) \end{bmatrix}$$

Observation:

- $\forall u, v \in X, \quad \| f(u) - f(v) \|_{L^n_{\infty}} \leq \rho(u, v)$
- $\forall u, v \in X, \exists i$ s.t. $\rho(u, v) = (f(u) - f(v))_i$

$$\rho(u, v) = (f(u) - f(v))_i \leq |f(u) - f(v)|_i \leq \max_i |f(u) - f(v)| = \| f(u) - f(v) \|_{L^n_{\infty}} \leq \rho(u, v)$$

L_{∞} is a universal space!
Good news: L_∞ is a universal space... for finite metric spaces

Some issues:

• The target dimension is huge ($d = n$). Can it be reduced? well... we can drop it down to $n – 1$
 (second observation can be refined by one coordinate)

How a significant improvement?
Incompressibility result

Theorem (Incompressibility of general metric spaces):
If Z is a normed space that D-embeds all n points metric space, then

- $\dim(Z) = \Omega(n)$ for $D < 3$
- $\dim(Z) = \Omega(n^{1/2})$ for $D < 5$
- $\dim(Z) = \Omega(n^{1/3})$ for $D < 7$

More compression requires bigger distortion