Theory of Clustering
There are several different methods for clustering

- Centroid based (k-means, k-medians, k-centers)
- Density based (DBSCAN, watershed, clustertrees)
- Hierarchical methods (linkage-trees)
- Similarity based (ncuts, spectral clustering)
- Bayesian/probabilistic methods (GMM, DPMM)

Despite having an abundance of methods, somehow it is still unsatisfactory...

For a new application we encounter, somehow none of these methods give what we want, and the practitioner is left with designing their own new clustering method
Rather than designing yet another clustering algorithm (YACA™), can one list a set of conditions/principles which any reasonable clustering algorithm should satisfy?

• doing so provides a gold standard, and would help design a high-quality clustering algorithm.
• Since these conditions must apply to every clustering task, these need to be simple, intuitive and fundamental.

What would these fundamental principles/conditions be?
An Axiomatic View of Clustering

Given a set of points \(X \) and a notion of comparison/distance \(d \), one can view clustering as a function \(f: (X,d) \mapsto \) some partition of \(X \).

For \(f \) to be a reasonable clustering algorithm, it should satisfy the following very natural conditions...

- **Scale-Invariance.** \(f(X,d) = f(X,\alpha d), \) for any \(\alpha > 0 \)

 changing the units doesn’t change the clustering

- **Richness.** Different \(d’ \)’s can yield different partitions. In fact, for all partitions \(P \) of \(X \), there is a distance \(d \), which can produce the partition. \(\forall P \exists d, f(X,d) = P \)

 The function \(f \) is flexible, and takes \(d \) into account... doesn’t simply produce trivial partitions

- **Consistency.** If \(d \) produces a partition \(P \), then any \(d’ \) that *enhances* the partition, ie \(d’ \leq d \) for intracluster distances, and \(d’ \geq d \) for intercluster distances, then \(f(X,d) = f(X,d’) \)

 Enhancing a clustering, should still yield that clustering
The Impossibility Result

Theorem. The three axioms (Scale-Invariance, Richness, and Consistency) are inconsistent! That is, there is no function f that can simultaneously satisfy all three axioms.

This provides some indication on why practitioners are usually dissatisfied with a clustering algorithm...

The result is due to Kleinberg ’15
Theorem. The three axioms (Scale-Invariance, Richness, and Consistency) are inconsistent! That is, there is no function f that can simultaneously satisfy all three axioms. \[\text{[Kleinberg ’15]}\]

Proof

Let f be a function that satisfies all three conditions and consider just three points $X = \{x_1, x_2, x_3\}$

By Richness, there exists d and d' such that

$$f(X,d) = \{ \{x_1\}, \{x_2\}, \{x_3\} \}, \quad f(X,d') = \{ \{x_1, x_2\}, \{x_3\} \}$$

Pick any $\alpha > 0$ sufficiently large such that $\alpha d' > d$.

Define $d'' := \alpha d'$, then

$$f(X,d) = f(X,d'') = f(X,d')$$