Overview: Distance Matrix Learning, Independent Component Analysis (Blind Source Separation), Matrix Factorization and Manifold Embedding

1 Review for Last Lecture

Linear Dimensionality Reduction:
1. RP
2. PCA
3. LDA (supervised technique)
 “maximizing” the distance between class means
 “minimizing” the inter-cluster variance
4. MDS
 Given: \(\text{dist}(O_i, O_j) = \delta_{ij}, x_i, x_j \in \mathbb{R}^D \) s.t. \(||x_i - x_j||_2 \equiv \delta_{ij} \)
 Goal: \(\min_S(x_1, ..., x_n) = \sum_{i<j} (D_{ij} - \delta_{ij})^2 \)
 Question: If new data comes, do we need to do the optimization again or there is a simple way?
 Answer: This is a question related to “out of simple” extension.

2 Distance Metric Learning

Given: \(x_1, ..., x_n \in \mathbb{R}^D \) \(\rho(x_i, x_j) = ||x_i - x_j||_2 = \left[\sum_{d=1}^{D} (x_{id} - x_{jd})^2 \right]^{1/2} = \left[(x_i - x_j)^T I (x_i - x_j) \right]^{1/2} \)
Output: Best Matrix \(L \in \mathbb{R}^{K \times D} \) for representing the data (improve the classification)
One observation:
\[
\rho_L(x_i, x_j) = ||Lx_i - Lx_j||_2 = \left[(x_i - x_j)^T L^T L (x_i - x_j) \right]^{1/2}
\]
Define \(M = L^T L \)
“Supervision”: \(x_1, ..., x_n \in \mathbb{R}^D; y_1, ..., y_n \in \{0, 1\} \)
Ideas:
1. “similar set” \(S = \{(x_i, x_j)\} \) s.t. \(y_i = y_j \) 2. “different set” \(D = \{(x_i, x_j)\} \) s.t. \(y_i \neq y_j \)
Professor came up an objective function:
\[
\min \Psi(M) = \sum_{(x_i, x_j) \in S} \frac{\rho^2_M(x_i, x_j)}{|S|} - \lambda \sum_{(x_i, x_j) \in D} \frac{\rho^2_M(x_i, x_j)}{|D|}
\]
The first term can be called “pull term”, the second “push term”, λ is a hyper-parameter. The classic approach is:

$$\max \sum_{(x_i, x_j) \in D} \rho_M^2(x_i, x_j)$$

s.t.

$$\sum_{(x_i, x_j) \in S} \rho_M^2(x_i, x_j) \leq 1$$

$$M \geq 0 \quad [M \in PSD]$$

$$\text{rank}(M) \leq k \quad (\text{"non-convex"})$$

Note1: $M \geq 0$ is “conic constrain”, it can be solved by “semi-definite program”, the basic idea is pick up negative eigenvalue and make it to be 0. Figure 1 shows some basic idea about how to deal with it.

![Figure 1](image)

Note2: Rank constraints are $L_0 - type$ and it is non-convex, the nearest convex constraints are $L_1 - type$ i.e. trace constraints($tr(M)$). Therefore, you can replace $\text{rank}(M) \leq k$ by $tr(M) \leq k$. However, if rank of L is critical, you have to work with $\text{rank}(L)$, making this a QP_2 problem.

3 Independent Component Analysis

Idea: “Maximize the non-gaussian of each dimension”

Example: Try to separate the conversation in a cocktail party using microphone.

Define D: number of microphone; K: number of conversation; T: sound dimension

Let $X = M \times S$, where $X \in R^{D \times T}$ is what you get from all the microphones, $M \in R^{D \times K}$ is the
conversation gained by the microphone. \(S \in \mathbb{R}^{K \times T} \) is sound signal from K conversations.

Assumption: The assumption is based on CLT, i.e., linear combination of independent random variables is going to be gaussian like. Therefore, \(X \) is more gaussian than \(S \) (\(S \) is independent from each other and \(X \) will be more dependent).

Goal: Find \(WX = S \) which is less gaussian like.

Question: How to measure gaussian like?

3.1 Kurtosis Method

Define kurtosis for a distribution \(y \),

\[
\text{kurtosis}(y) := E[y^4] - 3(E[y^2])^2.
\]

Fact: \(g \sim N(0, 1) \quad E(g^4) = 3 \)

\(\text{kurtosis}(y) = 0 \iff \text{gaussian} \)

\(\text{kurtosis}(y) < 0 \iff \text{subgaussian} \)

\(\text{kurtosis}(y) > 0 \iff \text{supgaussian} \)

The objective function:

\[
\max (\text{kurtosis}(WX))^2
\]

s.t.

\[
\text{var}(WX) = 1
\]

Drawback: Not robust to outliers!

3.2 Negative Entropy Method

Reminder: Entropy \(H(y) := -\sum_p P[Y = y] \log P[Y = y] = -\int x p \log p \, dx \)

Observation: Guassian distribution has least information, i.e., has most entropy of all distribution with the same variance.

The objective function:

\[
\max -H(WTX)
\]

s.t.

\[
\text{Var}(WTX) = 1
\]

3.3 Minimize Mutual Information Method

Goal:

\[
\min \sum_{i<j} I(W_iTX; W_jTX)
\]

4 Matrix Factorization

Example: Netflix Problem

Description: Suppose we have \(m \) users and \(n \) movies, each user rates the movies which he has seen. Let \(r_{ij} \) be the rating assigned by user \(i \) to movies \(j \). Since each user can only rate few movies, the matrix would be super-sparse.
Idea: we assume there are k factors which have vital influence on users and movies, these factors maybe include horror, romance, science, etc.
Define $u_i \in \mathbb{R}^k, m_j \in \mathbb{R}^k$, then $U \in \mathbb{R}^{m \times k}, M \in \mathbb{R}^{k \times n}$
Objective function:
$$\min_{U,M} \sum_{r_{ij} \in \text{observed}} (r_{ij} - u_i m_j)^2$$
Another way:
$$\min_{U,M} ||R - UM||^2_F$$

5 Manifold Embedding

Definitions:
1. n-dim manifolds: An object $\subseteq \mathbb{R}^D$ which locally looks like(homeomorphic) \mathbb{R}^n
2. Homeomorphic: continual f and $f^{-1} := \text{homeomorphic}$
3. Diffeomorphic: differentiable f and $f^{-1} := \text{diffeomorphic}$

Manifold hypothesis: $X \subseteq \mathbb{R}^D$ measurement are non-linear smoothly related. X is sampled from an underlying(low-dimensional) manifold(perhaps with some noise).

Explain: There are few underlying factors(n independent) which “control” your observations and you make $D \gg n$ different measurement s.t. $x_i \in \mathbb{R}^D$.

Figure 2 gives some intuition from \mathbb{R}^2 to \mathbb{R}^3.

Goal of manifold embedding: find f^{-1} or at least find $f^{-1}(x_i) \forall x_i \in X$

Figure 3 gives some intuition from \mathbb{R}^2 to \mathbb{R}^1.
Approach: Isometric mapping
1. Create K-NN graph to approximate geodesic distance.

\[\rho(x_i, x_j) = \text{geo}(x_i, x_j) \]

2. Run MDS on the geodesic distance.

\[\min S(y_1, \ldots, y_n) = \sum_{i<j} (D(y_i, y_j) - \delta_{ij})^2 \]

Note: Other approaches such as t-SNE, LLE, Max var unfolding will be discussed in the next few lectures.