This lecture introduces the problem of embedding and talks about the proof of Bourgain’s Theorem.

1 Embedding and dimensionality reduction

1.1 Overview and Motivations

Not all data people deal with has a “vector space” representation. For example, we might only have a similarity matrix, like the following:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Typical goals:
- gain better understanding of the relationship among data points.
- embed the data into a space (typically \mathbb{R}^d, l_2) that we understand better. We can then apply off-the-shelf models/algorithms etc.

Dimensionality Reduction:
- Reduce “noise” (noise is application-specific; whatever you do not care about.)
- Increase computational efficiency

Metric Embedding:
- Given a metric space (X, ρ), want to ”embed” it into a ”normed” space (\mathbb{R}^d, l_p).

- Computational efficiency

The goal for an embedding is a function $f : X \rightarrow \mathbb{R}^d$, where $\forall u, v \in X, ||f(u) - f(v)||_{l_p} \approx \rho(u, v)$. The bad news: in general, there are finite metric spaces (X, p), where X is a n-point metric space, that cannot be isometrically embedded into l_2^d for any d (in other word, no embeddings preserve distance exactly). See the following figure for an example.

Definition 1. Given two metric space $(X, \rho), (Y, \sigma)$. A mapping $f : X \rightarrow Y$ is called a D-embedding of X into Y (where $D \geq 1$) if there exists some $r > 0$ such that $\forall x, x' \in X$,

$$r \cdot \rho(x, x') \leq \sigma(f(x), f(x')) \leq D \cdot r \cdot \rho(x, x')$$
1.2 Embedding into l^d_∞

Reminder: $||u - v||_{l^d_\infty} = \max_{1 \leq i \leq d} |u_i - v_i|$

Theorem 2 (Frechet). Any n-point metric space (X, ρ) with $|X| = n$ can be isometrically embedded into $l^d_\infty (d = n)$.

Proof. Let $x \in X$, consider the function

$$f(x) = \begin{bmatrix} \rho(x, x_1) \\ \rho(x, x_2) \\ \vdots \\ \rho(x, x_n) \end{bmatrix}$$

Claim: f is a contraction. That is, $\forall u, v \in X, ||f(u) - f(v)||_{l^d_\infty} \leq \rho(u, v)$.

Observation: Because ρ is a metric and thus by triangle inequality,

$$\forall x_i \in X, \rho(u, x_i) - \rho(v, x_i) \leq \rho(u, v)$$

It follows that

$$\max_{u, v} \rho(u, x_i) - \rho(v, x_i) \leq \rho(u, v)$$

so the claim is true.

Now consider the coordinate for u, we have

$$\rho(u, v) \leq |\rho(u, u) - \rho(u, v)|$$
Therefore,
\[\rho(u, v) \leq ||f(u) - f(v)||_{l^\infty} \leq \rho(u, v) \]

\[\square \]

Question: can we do significantly better (e.g. \(d = o(n) \)) than \(d = n \) in Frechet’s Embedding?

Theorem 3 (Incompressibility of general metric spaces). If \(Z \) is a normed space that \(D \)-embeds all \(n \)-points metric space, then,
- \(\dim(Z) = \Omega(n) \) for \(D < 3 \).
- \(\dim(Z) = \Omega(n^{1/2}) \) for \(D < 5 \).
- \(\dim(Z) = \Omega(n^{1/3}) \) for \(D < 7 \).

If we want to compress \(l^d_\infty \), we have to have more distortion.

Theorem 4 (Construction is due to Bourgain). Let \(D = 3 \) and \((X, \rho) \) be a \(n \)-point metric space. Then there exists a \(D \)-embedding into \(l^d_\infty \) with \(d = \lceil 48\sqrt{n \ln n} \rceil = O(\sqrt{n \ln n}) \).

Proof Sketch

We want to have a coordinate such that \(\rho(u, v) \geq [f(u) - f(v)]_i \geq \frac{1}{3} \rho(u, v) \).

\[f(u) = \begin{bmatrix} \rho(u, A_1) \\ \rho(u, A_2) \\ \vdots \\ \rho(u, A_d) \end{bmatrix} \]

where \(A_i \subset X, \rho(u, A) = \min_{x \in A} \rho(u, x) \).

Figure 2: An illustration of the construction in the proof

Formal Proof

Proof. For \(1 \leq i \leq \lceil 24\sqrt{n \ln n} \rceil = m \):

- Pick \(x \in X \) with probability \(\min(\frac{1}{2}, \frac{1}{\sqrt{n}}) \) independently and thus constitute the set \(A_i \).
- Pick \(x \in X \) with probability \(\min(\frac{1}{2}, \frac{1}{n}) \) independently and thus constitute the set \(\bar{A}_i \).
∀x ∈ X, f(x) = \begin{bmatrix}
\rho(u, A_1) \\
\rho(u, A_2) \\
... \\
\rho(u, A_m) \\
\rho(u, \overset{_}{A}_1) \\
\rho(u, \overset{_}{A}_2) \\
... \\
\rho(u, \overset{_}{A}_m)
\end{bmatrix}

Claim: Pick any u, v ∈ X, u ≠ v and pick i, then either |\rho(u, A) − \rho(v, A)| ≥ \frac{1}{3} \rho(u, v) or |\rho(u, \overset{_}{A}) − \rho(v, \overset{_}{A})| ≥ \frac{1}{4} \rho(u, v) with probability ≥ \frac{1}{12\sqrt{n}} (over the choices of A and \overset{_}{A}).

Figure 3: An illustration of the three balls

Proof. (for the claim) Assume we have three balls: B_0(u, r = 0), B_1(v, r = \frac{1}{3} \rho(u, v)), B_2(u, r = \frac{2}{3} \rho(u, v)).

Idea: either |B_1 ∩ X| ≤ \sqrt{n} (no points from B_1 will be picked and at least one point from B_0 will be picked with some probability) or |B_1 ∩ X| > \sqrt{n} (no points from B_2 will be picked and at least one point from B_1 will be picked with probability ≥ \frac{1}{12\sqrt{n}}).

Case1 (|B_1 ∩ X| ≤ \sqrt{n}):
Consider set A,
Pr[E_1 := B_0 ∩ A ≠ φ] = \min(\frac{1}{2}, \frac{1}{\sqrt{n}}), Pr[E_2 := B_1 ∩ A = φ] = (1 − \min(\frac{1}{2}, \frac{1}{\sqrt{n}}))^{B_1 ∩ X} ≥ (1 − \min(\frac{1}{2}, \frac{1}{\sqrt{n}}))\sqrt{n} ≥ \frac{1}{4},
Since E_1 and E_2 are disjoint,
Pr[E_1 ∩ E_2] ≥ \min(\frac{1}{8}, \frac{1}{4\sqrt{n}}) ≥ \frac{1}{12\sqrt{n}}.

Case2 (|B_1 ∩ X| > \sqrt{n}): Consider set \overset{_}{A},
Pr[E_3 := B_1 ∩ \overset{_}{A} ≠ φ] ≥ ... ≥ \frac{1}{3\sqrt{n}}, Pr[E_4 := B_2 ∩ \overset{_}{A} = φ] ≥ ... ≥ \frac{1}{4},
Pr[E_3 ∩ E_4] ≥ \frac{1}{12\sqrt{n}}.
Therefore, the claim is true. □

We have:

\[
\Pr \left[\exists u, v \in \mathbf{X} \text{ s.t. } \forall A_i, \bar{A}_i, \right. \\
|\rho(u, A_i) - \rho(v, A_i)| < \frac{1}{3} \rho(u, v) \text{ and } |\rho(u, \bar{A}_i) - \rho(v, \bar{A}_i)| < \frac{1}{3} \rho(u, v) \left. \right] \\
\leq \sum_{(u,v) \in \mathbf{X} \times \mathbf{X}} \text{unordered pair} \\
(1 - \frac{1}{12\sqrt{n}})^m \text{ because of the union bound} \\
\leq \left(\frac{n}{2} \right) e^{-\frac{1}{12\sqrt{n}}} \\
\leq \left(\frac{n}{2} \right) e^{\ln \frac{1}{n^2}} \\
\leq \left(\frac{n}{2} \right) \frac{1}{n^2} \\
< 1.
\]

The proof uses the fact that \(m = \lceil 24\sqrt{n} \rceil \ln n \) and \((1 - x) \leq e^x\). Therefore, the embedding \(f \) exists. □

Open question: Is there a deterministic construction of embedding into \(l^{d_2}_d = O(\sqrt{n} \ln n) \) with \(D = 3 \)?

Theorem 5 (Generalization). Let \(D = 2q - 1 \geq 3 \) (be odd). Then any \(n \)-point metric space can be \(D \)-embedded into \(l^d_\infty \) where \(d = O(qn^{1/q} \ln n) \).

1.2.1 Summary

Frechet \(l^d_\infty d = nd = \Omega(n), D < 3 \).

Bourgain \(l^d_d, d = O(\sqrt{n} \ln n), D = 3 \).

1.3 Embedding into \(l^d_2 \)

Result1: (follows from Bourgain generalization): Any \(n \)-point metric space can be embedded into \(l^d_\infty \) with \(D = O(\log^2 n) \) and \(d = O(\log^2 n) \).

Refinement (Bourgain’s \(l_2 \) result): Any \(n \)-point metric can embed in \(l^d_2 \) with \(D = O(\log n) \).

Theorem 6 (Johnson-Lindenstrauss "flatten" lemma(JL-lemma, 1984)). Pick any \(0 < \epsilon < \frac{1}{2} \). Then for any integer \(n \), let \(d > \lceil \frac{4}{\epsilon^2} (2 \ln n + \ln 3) \rceil \rightarrow \Omega(\frac{\ln n}{\epsilon^2}) \). Then for any set \(V \subset \mathbb{R}^D \), s.t. \(|V| = n \), there exists a map \(f : \mathbb{R}^D \rightarrow \mathbb{R}^d \) s.t. \(V \subset \mathbb{R}^d \). \forall u, v \in V, (1 - \epsilon)||u - v||_2^2 \leq ||f(u) - f(v)||_2^2 \leq (1 + \epsilon)||u - v||_2^2 \).

- Moreover, \(f \) is simply a linear map.
• Pick a random d-dim subspace (in D-dim), then above holds true with high probability (minor global scaling).

For any D-dim v, define

$$f(v) = \begin{bmatrix} x_{11} & \ldots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{d1} & \ldots & x_{dD} \end{bmatrix} v$$

where $x_{ij} \forall i,j$ is drawn from a Gaussian independently. Then with high probability, f satisfies the above properties.

$\exists n + 1$ points in $\mathbb{R}^D (D \geq n)$ that cannot be isometrically embeddable in l_2^d with $d < n$.

Application of JL:

• Fast provable clusterings (1999)
• Fast approximate nearest neighbor search
• Approximate solutions to graph problems (e.g. multi-commodity flow)
• Fast approximate linear algebra (e.g. matrix multiplication) ("sketching")

Proof Sketch

Observation: Let ϕ be a random d-dim subspace (in D-dim).

Claim: We can show that $\mathbb{E}_{\phi}[||\phi(w)||^2] = \frac{d}{D}$. Pick any $0 < \epsilon < \frac{1}{2}$ and fix a unit vector $w \in \mathbb{R}^D$.

Then,

$$\Pr\left[||\phi(w)||^2 < (1 - \epsilon)\frac{d}{D} \text{ or } ||\phi(w)||^2 \geq (1 + \epsilon)\frac{d}{D}\right] \leq 3e^{-d\epsilon^2/4}.$$

Note: on average, a projection of w onto the random subspace ϕ has expected squared-norm:

$$\mathbb{E}[||\phi(w)||^2] = \frac{d}{D}.$$

Then, apply a concentration/Chernoff-type bound.

References

http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf