COMS 4771
Clustering

Nakul Verma
Supervised Learning

Data: $(x_1, y_1), (x_2, y_2), \ldots \in \mathcal{X} \times \mathcal{Y}$

Assumption: there is a (relatively simple) function $f^*: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f^*(x_i) = y_i$ for most i

Learning task: given n examples from the data, find an approximation $\hat{f} \approx f^*$

Goal: \hat{f} gives mostly correct prediction on unseen examples

Labeled training data (n examples from data) \[\rightarrow\] Learning Algorithm \[\rightarrow\] 'classifier' \hat{f} \[\rightarrow\] prediction

Unlabeled test data (unseen / future data)
Unsupervised Learning

Data: $\bar{x}_1, \bar{x}_2, \ldots \in \mathcal{X}$

Assumption: there is an underlying structure in \mathcal{X}

Learning task: discover the structure given n examples from the data

Goal: come up with the summary of the data using the discovered structure

Partition the data into meaningful structures

Find a low-dimensional representation that retains important information, and suppresses irrelevant/noise information

Let’s take a closer look using an example…
Example: Handwritten digits revisited

Handwritten digit data, but with no labels

What can we do?

• Suppose know that there are 10 groupings, can we find the groups?

• What if we don’t know there are 10 groups?

• How can we discover/explore other structure in such data?

A 2D visualization of digits dataset
Handwritten digits visualization
Grouping The Data, aka Clustering

Data: \(\vec{x}_1, \vec{x}_2, \ldots \vec{x}_n \in \mathcal{X} \)

Given: known target number of groups \(k \)

Output: Partition \(\vec{x}_1, \vec{x}_2, \ldots \vec{x}_n \) into \(k \) groups.

This is called the clustering problem, also known as unsupervised classification, or quantization.
Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Idea:
find a set of representatives $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ such that data is close to some representative

Optimization:

$$\minimize_{c_1, \ldots, c_k} \left[\sum_{i=1}^{n} \min_{j=1, \ldots, k} \| \vec{x}_i - \vec{c}_j \|^2 \right]$$

Unfortunately this is NP-hard
Even for $d=2$ and $k=2$

How do we optimize this?

How do we solve for $d=1$ or $k=1$ case?
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

- Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
- Repeat till no more changes occur
 - Assign data to its closest center (this creates a partition) (assume centers are fixed)
 - Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
• Repeat till no more changes occur
 • Assign data to its closest center (this creates a partition) (assume centers are fixed)
 • Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
• Repeat till no more changes occur
 • Assign data to its closest center (this creates a partition) (assume centers are fixed)
 • Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

- Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots \vec{c}_k$ (say randomly)
- Repeat till no more changes occur
 - Assign data to its closest center (this creates a partition) (assume centers are fixed)
 - Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
• Repeat till no more changes occur
 • Assign data to its closest center (this creates a partition) (assume centers are fixed)
 • Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

- Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
- Repeat till no more changes occur
 - Assign data to its closest center (this creates a partition) (assume centers are fixed)
 - Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Algorithm to approximate k-means

Given: data $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$, and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (say randomly)
• Repeat till no more changes occur
 • Assign data to its closest center (this creates a partition) (assume centers are fixed)
 • Find the optimal centers $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_k$ (assuming the data partition is fixed)

Demo:
Some properties of this alternating updates algorithm:

- The approximation can be arbitrarily bad, compared to the best cluster assignment!
- Performance quality heavily dependent on the initialization!

k-means:
- How to select k?

Solution: encode clustering for all values of k!
(hierarchical clustering)
Example: Clustering Without Committing to k

$K=3$
(coarser resolution)

$k=6$
(finer resolution)
Hierarchical Clustering

Two approaches:

Top Down (divisive):
- Partition data into two groups (say, by k-means, with k=2)
- Recurse on each part
- Stop when cannot partition data anymore (ie single points left)

Bottom Up (agglomerative):
- Start by each data sample as its own cluster (so initial number of clusters is \(n\))
- Repeatedly merge “closest” pair of clusters
- Stop when only one cluster is left
Clustering via Probabilistic Mixture Modeling

Alternative way to cluster data:

Given: \(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d \) and number of intended number of clusters \(k \).
Assume a joint probability distribution \((X, C)\) over the joint space \(\mathbb{R}^d \times [k] \)

\[
C \sim \begin{pmatrix}
\pi_1 \\
\vdots \\
\pi_k
\end{pmatrix}
\]

Discrete distribution over the clusters \(P[C=i] = \pi_i \)

\[
X | C = i \sim \text{Some multivariate distribution, e.g. } \mathcal{N}(\mu_i, \Sigma_i)
\]

Parameters: \(\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_k, \mu_k, \Sigma_k) \)

Modeling assumption data \((x_1, c_1), \ldots, (x_n, c_n)\) i.i.d. from \(\mathbb{R}^d \times [k] \)

BUT only get to see partial information: \(x_1, x_2, \ldots, x_n \) \((c_1, \ldots, c_n \text{ hidden!}) \)
Gaussian Mixture Modeling (GMM)

Given: \(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n \in \mathbb{R}^d \) and \(k \).

Assume a joint probability distribution \((X, C) \) over the joint space \(\mathbb{R}^d \times [k] \):

\[
C \sim \begin{pmatrix} \pi_1 \\ \vdots \\ \pi_k \end{pmatrix} \quad \text{Mixing weight}
\]

\[
X|C = i \sim N(\mu_i, \Sigma_i) \quad \text{Mixture component}
\]

\[
P[\tilde{x} | \theta] = \sum_{i=1}^{k} \pi_i \frac{1}{\sqrt{(2\pi)^d \det(\Sigma_i)}} \exp \left\{ -\frac{1}{2} (\tilde{x} - \mu_i)^T \Sigma_i^{-1} (\tilde{x} - \mu_i) \right\}
\]

\(\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_k, \mu_k, \Sigma_k) \)

(\text{this is called a mixture model})

Example in \(\mathbb{R}^2 \times [3] \):

\(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n \in \mathbb{R}^2 \)

\(P[\tilde{x} | \theta] \)
GMM: Parameter Learning

\[P[\vec{x} | \theta] = \sum_{i=1}^{k} \pi_i \frac{1}{\sqrt{(2\pi)^d \det(\Sigma_i)}} \exp \left\{ -\frac{1}{2} (\vec{x} - \vec{\mu}_i)^T \Sigma_i^{-1} (\vec{x} - \vec{\mu}_i) \right\} \]

\[\theta = (\pi_1, \vec{\mu}_1, \Sigma_1, \ldots, \pi_k, \vec{\mu}_k, \Sigma_k) \]

So... how to learn the parameters \(\theta \)?

MLE approach:

Given data \(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d \) i.i.d.

\[\theta_{\text{MLE}} := \arg \max_{\theta} \sum_{i=1}^{n} \ln P[\vec{x} | \theta] \]

\[= \arg \max_{\theta} \sum_{i=1}^{n} \ln \left[\sum_{j=1}^{n} \pi_j \frac{1}{\sqrt{(2\pi)^d \det(\Sigma_j)}} \exp \left\{ -\frac{1}{2} (\vec{x} - \vec{\mu}_j)^T \Sigma_j^{-1} (\vec{x} - \vec{\mu}_j) \right\} \right] \]

ummm.... now what? Cannot really simplify further!
MLE for Mixture modeling (like GMMs) is NOT a convex optimization problem

In fact **Maximum Likelihood Estimate** for GMMs is degenerate!

\[X = \mathbb{R}, \; k = 2 \; (\text{fit two Gaussian in 1d}): \]

Which pair of Gaussians gives higher likelihood?

\[\text{as } \sigma \to 0, \; \text{MLE} \to \infty! \]

Aside: why doesn’t this occur when fitting one Gaussian?
So, can we make any progress?

Observation: even though a global MLE maximizer is not appropriate, several local maximizers are desirable!

A better algorithm for finding good parameters: Expectation Maximization (EM)
Expectation Maximization (EM) Algorithm

Similar in spirit to the alternating update for k-means algorithm

Idea:

- Initialize the parameters arbitrarily
- Given the current setting of parameters find the best (soft) assignment of data samples to the clusters (Expectation-step)
- Update all the parameters with respect to the current (soft) assignment that maximizes the likelihood (Maximization-step)
- Repeat until no more progress is made.
EM for GMM

Initialize $\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_k, \mu_k, \Sigma_k)$ arbitrarily

Expectation-step: For each $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, k\}$ compute the assignment $w_{j}^{(i)}$ of data x_i to cluster j

$$w_{j}^{(i)} := \frac{\pi_j \sqrt{\det(\Sigma_j^{-1})} \exp \left(-\frac{1}{2} (\bar{x} - \mu_j)^T \Sigma_j^{-1} (\bar{x} - \mu_j) \right)}{\sum_{j' = 1}^{k} \pi_{j'} \sqrt{\det(\Sigma_{j'}^{-1})} \exp \left(-\frac{1}{2} (\bar{x} - \mu_{j'})^T \Sigma_{j'}^{-1} (\bar{x} - \mu_{j'}) \right)}$$

Maximization-step: Maximize the log-likelihood of the parameters

$$n_j := \sum_{i=1}^{n} w_{j}^{(i)} \quad \text{Effective number of points assigned to cluster } j$$

$$\bar{\mu}_j := \frac{1}{n_j} \sum_{i=1}^{n} w_{j}^{(i)} \bar{x}_i$$

$$\Sigma_j := \frac{1}{n_j} \sum_{i=1}^{n} w_{j}^{(i)} (\bar{x}_i - \bar{\mu}_j)(\bar{x}_i - \bar{\mu}_j)^T$$

$$\pi_j := \frac{n_j}{n}$$

Why?
Arbitrary θ assignment
EM for GMM in Action

E step: soft assignment of data
EM for GMM in Action

M step: Maximize parameter estimate
EM for GMM in Action

After two rounds

$L = 2$
EM for GMM in Action

After five rounds
EM for GMM in Action

After twenty rounds

$L = 20$
What We Learned...

- Unsupervised Learning problems:
 Clustering and Dimensionality Reduction
- K-means
- Hierarchical Clustering
- Gaussian Mixture Models
- EM algorithm
Questions?
Next time...

Dimension reduction!