
HW #7 SOLUTIONS

NT-1. For each of the following two expressions, identify any static combinational
hazards that exist in the corresponding 2-stage logic circuits, assuming SIC operation.
(a) Z=A†B†+AC†
(b) Z=(A†+B†+C†)(A†+B+C)(A+D)
(c) Z=AB†+A†C†D+AD†+AC

(a) Z=A†B†+AC† From the algebraic expression, we can see that the two terms have a
consensus, B†C†, which is not part of the expression . This means that there is a static 1-
hazard in the region corresponding to this term, which is where B=C=0, when A changes
in either direction. We could also see this from the K-map with the p-terms of the
expression ovalled, as below. Clearly, the adjacent 1-points 000 and 100 are in different
ovals, and no one oval includes both, so that moving between these points entails a 1-
hazard.

C

A

B

1
1

1 1

(b) Z=(A†+B†+C†)(A†+B+C)(A+D). This is a POS expression, so the hazards we must be
concerned with are static 0-hazards. One approach is to specialize (set) values of the
variables other than A to reduce the expression to AA†. This can be done in two ways.
In both cases, in order to preserve the one A-term, we must set D=0. Then to capture the
leftmost A†-term, we set B=C=1. This identifies hazardous transitions between 0110 and
1110. Then we focus on the second A†-term, by setting B=C=0, to obtain the pair of
points 0000 and 1000.
An alternative approach is to map the DUAL expression, which is, of course, a SOP
expression. Then we can use the map method to identify 1-hazards, which will
correspond to 0-hazards for the original expression, but at the dual points. This map is
shown below:

A

C

D

B

 1

 1

 1

 1

 1 1

 1 1

The 1-hazards for the mapped expression are between 0001 and 1001, and between 0111
and 1111. The DUAL pairs, are (map 0 to 1 and 1 to 0) are 1110 and 0110 (the first pair)
and 1000 and 0000 (the second pair).

(c) Z=AB†+A†C†D+AD†+AC
We might notice the missing consensus term (between the first two terms), namely B†C†D,
indicating as 1-hazard involving an A-change between 0001 and 1001.
The K-map is shown below:

A

C

D

B

 1

 1

 1

 1

 1 1

 1

 1

 1

The only 1-hazard is between 0001 and 1001, i.e., with A changing while B=C=0, and
D=1.

NT-2. Design 32-bit speculative completion adders meeting each of the following
specifications. Assume the body of the adder is of the ripple-carry type and that there is 1
unit of delay for each adder stage.
(a) The completion signal is generated with delay 32 (worst case) or with delay 17. Use 2
p-signals.

If input pair 16 is NOT a propagator (p16=0) then the longest carry ripple is from 17 thru
32 (length 16). If input pair 17 is NOT a propagator (p17=0) then the longest carry ripple
is from 1 thru 16 (length 16). So, if p16=0 or p17=0, no carry ripple can be longer than
16. Then we can use the signal p§1§6§§p§1§7§ to set the completion signal delay to 16. (We can
do a little better than the 17 in the problem statement.)
p16=A16ºB16 and p17=A17ºB17. Note that both of these signals can be used to
generate sum bits S16 and S17, so generating them for the completion signal doesn't cost
anything extra. The circuit for the acknowledge signal is shown below. We neglect
delays in the logic gates, since these can be absorbed in the delay elements.

ACKREQ

p16
p17

16 16

The adder is an ordinary ripple-carry adder. Assume that the adder inputs are valid at the
time that the REQ signal is turned on, in which case the adder outputs will be valid as
soon as ACK goes on.

(b) The completion signal is generated with delay 32, or 17, or 12. Use 2 p-signals to
control the delay of 17, and 4 p-signals to control the delay of 12.
 Use p16 and p17 as in part-a to generate a signal that cuts 16 units off the delay.
Now suppose that p8 or p9 =0, that p16 or p17 =0, and that p24 or p25 =0. Then the
longest possible carry chain cannot exceed 8. For example, suppose p8=p17=p25=0 and
all other p's=1. Then the carry chain lengths, starting at cell-1, are 7 (ending at 7), 8
(starting at 9 and ending at 16), 7 (starting at 18 and ending at 24), and 7 (starting at 26
and ending at 32). Also, note that if p8p9=0 and p25p26=0, no carry chain can be longer
than 16.
So the carry chain cannot exceed 16 if X=p§1§6§p§1§7§=1 or if Y=(p§8§p§9§)(p§2§4§p§2§5§)=1.
The carry chain length cannot exceed 8 if XY=1. The circuit below exploits these
observations.
It does a little more than was asked for in this problem in that it shortens the delay to 16
for the case where X=0 and Y=1.

 p17
p16 Y

p17

ACK

REQ

16

p17
p16

00

11

MUX
01
10

8 8

p16
X

NT-3. Using as building blocks full adders and half adders, as well as a single block
representing a fast 5-bit adder with carry out, draw a diagram of an array multiplier based
on the carry save adder idea, that will multiply two 5-bit numbers. Assume as inputs, the
1-bit products, pij, where pij=AiBj.

 b5 b4 b3 b2 b1
 a5 a4 a3 a2 a1

 p15 p14 p13 p12 p11
 p25 p24 p23 p22 p21
 p35 p34 p33 p32 p31
 p45 p44 p43 p42 p41
 p55 p54 p53 p52 p51
 --
 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

S1S2S3S4S5S6S7S8S9S10

5-bit Conventional
Adder

+ + +

++ ++ +

+ +

+ + + ++

p11p12p21p31 p22 p13p32 p23 p14p33 p24 p15p34 p25p44 p35p54 p45p55

p43 p42 p41

p51p52p53

NT-4. Construct a tree of CSA's to add 32 numbers. Don't worry about bit positions.
Represent each adder (k-bits) by an oval. Terminate with a rectangle, representing a
conventional adder that generates a single number for its output. There is no unique
solution to this problem. The statement that this could be done with a tree of depth 8,
including the conventional adder is wrong. The best that can be done for 32 inputs is a
tree of depth 9. (Trees of this depth exist for up to 42 inputs.) I apologize for the error.

The tree below is one example of a depth-9 tree for n-32. It was built from the bottom
up. Each oval represents a k-bit CSA, and the rectangle at the bottom represents a
conventional adder--presumably a fast one--there is no point in using the array if we are
going to use a slow adder at the end.

SUM

