
3-Way Comparator
Assume normal register orientation, were the LSB (least significant bit) is on the right
end.
Flow table for right-to-left information flow is:

           AB
    00 01 11 10 y1 y2
1   1   2   1   3   0   0
2   2   2   2   3   0   1
3   3   2   3   3   1   1

(a)

Flow table for left-to-right information flow is:

           AB
    00 01 11 10 y1 y2
1   1   2   1   3   0   0
2   2   2   2   2   0   1
3   3   3   3   3   1   1

(b)

NT-1. Linear iterative circuit realization.

For table (a), with the given state assignment, we have Y1=AB†+Ay1+B†y1,
Y2=A†B+AB†+y2
There is only one set of outputs for the circuit, and these are generated in the leftmost
cell.  The outputs are L (A<B), E, (A=B), and G (A>B).  If the next-state signal in this
last cell is 1, then E=1, if the next-state signal is 2, then L=1, and, if the next=state signal
is 3, then G=1.  The resulting expressions can be derived in a manner similar to the way
we find the Y's.  Taking into account the unused y-state 10, which we exploit as
corresponding to a don't care row, we can see that (A†B†+AB)y†2 captures the 1-entries.
Note that A†B†+AB=A§º§B§, so we have E=(A§º§B)y†2.
In a similar manner we get L=A†B+A†y†1y2+By†1y2 and G=AB†+B†y1+Ay1.

For table (b) we find Y1=AB†y†2+y1, Y2=A†B+AB†+y2
E=(A§º§B)y†2, L=A†By†1+y†1y2 and G=AB†y†2 y†2+y1.

Of course, with different state assignments, we would get different (perhaps better or
worse) logic expressions.



NT-2.
Assume that we use table (a), i.e., signal flow starts at the LSB end and terminates at the
MSB end.
Then  the complete set of mappings, followed by the multiplication table is:

M0  M1  M2
 1      2     3
 2      2     3
 3      2     3

                         left
                 M0   M1   M2
          M0  M0   M1   M2
 right  M1  M1   M1   M2
          M2  M2   M1   M2

Suppose the mapping for the entire sequence is M2, corresponding to the 10 input.  That
would mean that, assuming the initial state corresponding to row-1, which is should be,
then starting from the MSB end and moving to the right, the first time that A and B
signals differ would have to be a 10 input, i.e., where A>B.  Clearly this means that the
number A is greater than the number B, so G=1.  If the overall mapping is M, then A=B
in every position, so we should set E=1.  Finally, if the overall output mapping is 01, then
A<B so we should set L=1.
The tree network efficiently generates the overall mapping, and  that is all we need.  The
outputs can be taken from the output of the root node.

A 1-hot code works nicely for the mappings, as shown below:

mapping  w1    w2   w3
     M0       1      0       0
     M1       0      1       0
     M2       0      0       1 

The logic for the primary level cells is obtained from

            AB
00    01    11    10  
M0   M1   M0  M2

            AB                             
00    01    11    10
100  010  100  001
                              W1W2W3



W1=(A§º§B§), W2=A†B,  W3=AB†

At the root node, set E=W1, L=W2, G=W3.

The interior cell logic can be generated from the multiplication table, replacing the Mi's
by the corresponding codes.  We get, W1=WL1WR1, W2=WL2+WL1WR2,
W3=WL3+WL1WR3

P P P P

P P

P

GE L

P P P P P P P P

NT-3.  Use flow table (a).  1-hot code state assignment as below.

              AB
    00   01  11  10  y1  y2  y3
1    1    2    1    3    1    0    0
2    2    2    2    3    0    1    0
3    3    2    3    3    0    0    1

For dual-rail signals let X=1 be represented by X1, and X=0 by X0.

We will use dual-rail inputs, 1-hot code state assignment (as above), and, in  effect, a 1-
hot code output, with signals E, L, and G.

From the flow matrix we get the Y-logic.  We need Y1=1 wherever the next-state entry is
1.  These entries are both in row-1 (where y1=1), in columns 00 and 11.  So we have
Y1=A0B0y1+A1B1y1.

Similarly, Y2 should be 1 wherever the NS entry is 2.  So we get
Y2=A0B1+A0y2+B1y2.
Finally, Y3=A1B0+A1y3+B0y3

4. Show the design of a Brent-Kung adder for 8-bit numbers. Draw a block diagram with
all the primary level, interior and output generating modules. Specify logic expressions
for each type of module.



S8 S7 S6 S5 S4 S3 S2 S1

C0

PG7 PG6 PG5 PG4 PG3 PG2 PG1

PG7-6 PG6-5 PG5-4 PG4-3 PG3-2 PG2-1

PG7-4 PG6-3 PG5-2 PG4-1 PG3-1

PG7-1 PG6-1 PG5-1

C7 C6 C5 C4 C3 C2 C1
P8 P7 P6 P5 P4 P3 P2 P1

Primary Level

Interior

Interior

Interior

Carry
Gen

Output

A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1

The primary level modules produce the G and P signals corresponding to the input pairs.
The logic is:  Pi=AiºBi,  Gi=AiBi.

Interior level modules generate G and P signals for the inputs that they span.  The logic
is:
P=PLPR,  G=GL+PLGR

The carry generate modules, produce the carry signals from the P, G, and C signals they
receive.  The logic is:  Cout=G+PCin.  Note, each produces Ci from PGi-1 and C0.

The output modules produce the S signals given the input and carry signals.  The logic is:
Si=PiºCi-1.  (Note that the Pi signals are themselves produced by the primary modules.)


