6.13. The flow table is shown below.

	TR								
	00	01	11	10					
1	0,0	2,0	-	3,0					
2	1,0	2,0	7,0	-					
3	4,-	-	7,0	3,0					
4	@ 1	5,1	-	8,1					
5	1,-	5,1	6,1	-					
6	-	2,-	6,1	3,-					
7	-	5,-	Ø,0	3,0					
8	1,-	-	6,1	8,1					

6.54. For the state assignment used for the Figure 6.78b, $y_1 = 1$ for state-3, where the balance is 10ϕ , and $y_2 = 1$ for state-2, where the balance is 5ϕ . So we can specify an indicator light driven by y_1 to indicate a 10ϕ balance, and another light driven by y_1 to indicate a 5ϕ balance. This illustrates nicely how a pulse-mode circuit can generate both pulse outputs and steady state outputs.

6.55. (a) There are four situations in which dimes are returned, three of them in the qcolumn, and one in the r-column. For the r-column case, with balance 10ϕ , instead of refunding a dime, we might have the system refund a nickel and set the new balance to 5ϕ by setting the next-state entry in row-3 to 2,N. In the q-column, for each state, a candy bar (priced at 15ϕ) will be emitted, and the effective new balance will be 10ϕ greater than the previous balance. For row-1, instead of returning a dime and leaving the balance at 0 (state-1), we can refund 5ϕ and change the balance to 5ϕ (row-2). Similarly, for row-2, we can refund 5ϕ and set the new balance to 10ϕ . We cannot avoid refunding a dime for state-3, since there is no provision for a balance exceeding 10ϕ or for ejecting two candy bars. The resulting flow table is shown below.

Bal		n	d	q	r	y1y2
0	1	2	3	2CN	1	0 0
5	2	3	1C	3CN	1N	0 1
10	3	1C	2C	3CD	2N	1 0
	-		-0] - 0

(b) The new logic expressions are:

 $T1 = (ny1+ny2)+(d\bar{y}2)+(qy2)+(ry1) = n(y1+y2)+d\bar{y}2+qy2+ry1$ $T2 = (n\bar{y}1)+(dy1+dy2)+(q\bar{y}1)+(ry1+ry2) = n\bar{y}1+(d+r)(\underline{y1+y2})+q\bar{y}1$ $C = (ny1)+(dy1+dy2)+(q) = ny1+d(\underline{y1+y2})+q$ $D = (q\bar{y}1) = qy1$ $N = (q\bar{y}1)+(ry1+ry2) = q\bar{y}1+r(\underline{y1+y2})$

(The logic above is considerably more costly than that for the original solution. But, it might be worth the price if the operation of the system is significantly improved.)