Excerpt from: Stephen H. Unger, The Essence of Logic Circuits, Second Ed., Wiley,
1997

APPENDIX

A.1 Number systems and codes

Since ten-fingered humans are addicted to the decimal system, and since computers
operate most efficiently in binary, it is necessary to understand how both integers and
fractions can be translated from one system to the other. Certainly those involved in the
design of computers must understand how to do arithmetic in the binary system. But
computers operate on text as well as on numbers. This motivated the development of
American Standard Code for Information Exchange (ASCII) and other standard coding
schemes that can specify alphabetic characters and other non-numerical symbols in terms
of 1s and Os.

In addition to binary and decimal, we are sometimes interested in other number bases.
For example, octal and hexadecimal are often used to represent strings of Os and 1s
compactly. We begin with a discussion of number systems in general.

A.1.1 Number Systems

When an integer is expressed in positional notation with base b, each numeral is weighted
by a power of b, depending on its position. The rightmost, or least significant, digit is
given weight b, = 1, and, in general, the ith digit from the right has weight b"'. Thus, in
base b the number x would be expressed as a, ,a,,...a, (Where the a,-digits range from 0
through b-1) and we have the equation:

X =a, b"'+a,_,b"*+...+b, (1)
Consider, for example, the number 7542 expressed in our usual decimal, or base-10,
notation. In the notation just presented, we would express it as:
7x10°+5x10*+4x10'+2x10°. The value of the numeral 4 is 4 x10' = 40, the value of the 7
is 7x10% = 7000, etc.

For engineering reasons related to reliability and other factors, it has been found most
effective to use two-valued signals within computers. Hence, it is best to represent
numbers in base-2 notation; we refer to these as binary numbers.

Because so many problems in logic design, computer programming, and other aspects of
the computer field involve powers of 2, it is very useful for people working in the area to
be able to compute mentally the value of any power of 2. Fortunately this is not a
difficult skill to acquire. One must first memorize the first 10 powers of 2 (1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024). Note then that 2'° = 1024 is within 2.5% of 1000 = 10°.
Thus, to estimate the value of a fairly large power of 2, we can replace each multiple of
10 in the exponent of 2 by 10 in the result, and then multiply by the value of 2 raised to
the power of the exponent modulo-10. This is easier done than said. For example, 2%
can be found quickly by noting, in effect, that it is equal to 2'°x 2'° x 2° =
(approximately) 10° x 10° x 32 =32 million. In the computer field the abbreviation K is
commonly used to mean 2', so that a 64K-memory chip contains 64x 2" or 65,536 bits.
A.1.2 Arithmetic in Binary

Arithmetic operations in the binary number system are carried out the same way as in the
more familiar decimal system. But the individual steps are easier to execute since there
is only one non-zero numeral. Hence, only one operation each, for addition and
multiplication need be memorized. Each of these operations (Ix1 =1and 1 +1 =10)



involve two non-zero operands. One example of each of the four basic arithmetic
operations is shown below.
1.. Addition
110100110
+101111111
1100100101
2. Subtraction
1100011001
-1011111011
11110
3. Multiplication
1011
x1101
1011
1011
1011
10001111
4. Division

101
110100010
110
1010
110

110 (the remainder)

Since computers usually operate in binary and people operate in decimal, it is necessary
to be able to convert numbers between decimal and binary forms. Before discussing
these specific conversions, it will be useful to consider the more general case of
conversions between decimal and base-b numbers for arbitrary values of b.

A.1.3 Negative Numbers

Since digital computers do a great deal of arithmetic computation, negative numbers will
often be encountered and we must have a convenient way of dealing with them. That is,
we need a simple way to represent numbers as being either positive or negative.

The most obvious approach is to reserve one bit of a word representing a number as the
sign bit. (Although real computers represent numbers with anywhere from 16 to 64 bits,
the principles involved are easier to illustrate with a much smaller word. Thus, 4-bit
words will be used here.) For example, if our computer had 4-bit words to represent
numbers, then we might specify that all positive numbers have a 0 in the leftmost bit and
that this bit be 1 for all negative numbers. The rightmost three bits would specify the
magnitude of the number in binary, as discussed earlier. Thus, the number 5 would be
specified as 0101 while -4 would be written as 1100. There are several drawbacks to this
apparently simple scheme, commonly referred to as the sign-magnitude method. One is
that if two arbitrary numbers are to be added, it is necessary to examine the signs of each



of them to determine whether to generate the sum or difference of the magnitudes, and a
further logical operation is required to decide what sign to attach to the result. A second
difficulty is that there are two representations of 0, since +0 = -0. In our four-bit
example, both 0000 and 1000 represent 0. This complicates comparison operations, since
if two numbers are being tested for equality, special provision must be made for the
possibility that one is +0 and the other -0. For these reasons, most computers use
different approaches, and by far the most common technique is the two's complement
method presented below.

In order to understand this method, it is essential to have a firm grasp of a few simple
points about binary number representations.

1. The most significant (Ieftmost) bit of an n-bit binary number has weight 2™'. Thus,
the binary number 1000 represents the number 2*' = 2°=8,

2. With n bits, we can represent magnitudes ranging from O to 2°-1. Thus, with four bits
we can specify numbers from 0 (0000) through 15 (1111).

3. If the result of an arithmetic operation (say addition) exceeds the number of bits in the
register provided for, it then is easy to arrange for the lower bits to go into the register
with the excess upper bits simply being discarded. Thus, what appears in the register is
the original number modulo-2". For example, if we try to stuff the binary number
representing 37 (whose binary representation is 100101) into our four-bit register, what
actually goes in is the number 0101 (5 in decimal notation), which is 37 modulo-16.

Finally, a word about notation. In our discussion, symbols such as k or k;, will represent
absolute values, i.e., positive numbers. Negative numbers will be written as (-k).

Now we can introduce two's complement numbers. For an n-bit system, the two's
complement of a number k is defined as 2"-k. Thus, for n = 4, the two's complement of 5
is 2*-5 = 16-5 = 11, which would be written as 1011. The basic idea is to represent
negative numbers as the two's complements of their absolute values. Positive numbers
are represented as the simple binary equivalents, so 5 would simply be 0101.

But then how do we distinguish between positive and negative numbers? In the
preceding example, how do we know that 1011 stands for -5 as opposed to 11? This is
accomplished by recognizing that, given n bits, a total of 2" different numbers (positive
and negative) can be specified. We must partition this set between the non-negative
numbers (positive or 0) and the negative numbers. This is done by reserving all of the
codes with O for the most significant bit for the non-negative numbers, and all of the
codes with 1 in the first position for the negative numbers, the latter being represented by
the two's complements of their magnitudes. Thus, as in sign-magnitude notation, the
leftmost bit serves as a sign bit. This works out very nicely because the binary
representations of all of the non-negative numbers from 0 through 2"'-1 have 0 for the
most significant bit, and the two's complements of the numbers from -1 through —2"" all
have 1 for the most significant bits. This is illustrated in the table of Figure A.1 for the
case of n =4.



Decimal Number Two's Complement Representation

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

Figure A.1 Two's complement system for four-bit numbers.

Readers should examine this table carefully to verify the various statements made earlier.
Note that all 16 codes have been allocated. There is only one representation of 0.
However, since 0 takes up one code, this leaves an odd number of codes to be allocated
between the positive and negative numbers. In this system, the extra code goes to the
negative numbers in that (-2"") is represented, but 2" is not represented. In our four-bit
example, -8 appears, but 8 does not appear. This asymmetry is an inevitable price of
insisting on a single representation of 0. More about this later.

Let us now see how the system works out with respect to arithmetic operations. First we
note that a number, whether positive or negative can be negated (i.e., its sign changed) by
taking its two's complement. This is obviously true by definition for positive numbers.
Suppose now we have the two's complement representation of (-k), which would be 2"-k.
If we take the two's complement of this, we obtain 2"-(2"-k) = k, which is as it should be.
The case of 0 merits special consideration. What is the two's complement of 0? Our
procedure specifies this as 2"-0 = 2". At first, this looks like trouble. But then we note
that 2" exceeds the maximum number that can be represented by n bits, and so, as noted
at the outset of this discussion (item 3), the actual number that will be stored is the
calculated number modulo-2", which, in this case is 2" modulo-2", or simply 0. Thus, O is
its own two's complement, and all is well.

Now consider what happens when two's complement numbers are added. Adding two
non-negative numbers produces another non-negative number, provided that the sum
does not exceed 2"'-1 (which we specified as the largest allowable non-negative
number). For example, adding 0100 to 0010 yields 0110. (The situation in which the
sum is too large, known as an overflow, is treated at a later point.)

Suppose two negative numbers (-k;), and (-k,) expressed in two's complement are added.
This is equivalent to finding 2"-k,+2"-k, = 2"+2"-(k,+k,). Since what actually appears in
an n-bit register is the result modulo-2", this is equivalent to 2"-(k,+k,), which is the two's



complement of (-k,)+(-k,), assuming k,+k, does not exceed 2" (which would be another
instance of overflow). As an example, consider, for our four-bit word size, adding -2 and
-3. In two's complement form this would be equivalent to (16-2)+(16-3) = 16+16-
(+2+3), which, modulo-2*, is equal to 16-(2+3) = 16-(5) = 11, the two's complement
version of -5.

If a non-negative number k, is added to a negative number (-k,), where k,<k,, the result
would be k,+(2"-k,) = 2"-(k,-k,) which is the two's complement representation of the
correct result, a negative number. For example, 1+(-6) would correspond to 1+(24-6) =
24-(6-1) = 24-5, the two's complement form of -5. If k,=k,, then the result can be
expressed as 2"+(k,-k,), which is the correct answer, a positive number, modulo-2". An
instance of this situation is the sum 5+(-3), which in two's complement form, corresponds
to 5+(2*-3) = 2*+(5-3) = 2*+2 = 2 modulo-2*. No overflow is possible when numbers of
opposite signs are added.

Thus, in all cases, correct results are obtained. Let us now consider how to compute the
two's complement of an n-bit binary number k. If we have an arithmetic unit that can
perform subtraction, the simplest approach is to generate 0-k. This is clearly equal,
modulo-2", to 2"-k. For example, in binary, with n =4, 0000-0101 = 1011. The carry out
from the leftmost position is simply ignored.

An approach that does not require subtraction is based on the fact that the binary
representation of 2™ consists of a string of n 1s. For example, 2*-1 = 15 is written in
binary as 1111. If we subtract k from 2"-1, the effect is simply to complement each bit of
the binary form of k. In other words, all that is necessary to convert the binary
representation of k to the representation of 2""'-k is to complement each bit. Thus, 1111-
0101 = 1010. But this number is just 1 less than the two's complement. Hence, we can
obtain the two's complement of a binary number by complementing each bit of the
number and then incrementing the result by 1. Thus, to obtain the two's complement of
6 in our four-bit system, we go from 0110 to 1001 to 1010. We will sometimes use the
notation TC(k) to represent the two’s complement of k. Thus, for the preceding example,
we might write TC(0110) = 1010. Of course, this works both ways, i.e., TC(1010) =
0110.

Another method is based on the rule for incrementing by 1 (see the discussion of
counting on p. 201). Starting at the least significant end, all bits up to and including the
first O encountered are complemented, and all of the more significant bits are left
unchanged. Suppose we apply this to the complement-increment technique. Because of
the complementing step, the incrementing operation restores to the original values all of
the bits starting with the least significant (rightmost) 1 of the original string. It inverts all
of the bits to the left of this bit. So the rule is simply to complement all bits to the left of
the rightmost 1 in the number. For example, applying this idea to 0110, means that we
should complement the two leftmost bits, yielding 1010. This technique allows us to
generate two's complement s very easily by inspection. It also lends itself to
implementation by relatively simple iterative circuits (see Sections 5.2 and 5.3 and
Problem A.9).

If a string of 1s and Os represents an unsigned binary number, the magnitude of this
number can be calculated, as pointed out in Section A.1.1, by adding the weights
corresponding to each position containing a 1, where these weights are 2" for the ith bit



from the right. That is, the weight of the rightmost position is 1, the next position has
weight 2, the next 4, etc. A careful examination will show that if the same string of bits
is considered to represent a signed two's complement number, the only change that need
be made is to change sign of the weight of the leftmost bit (the sign bit) to a minus sign.
This does not change the value assigned to positive numbers, since the sign bit for a
positive number is 0. But the value of a negative number is changed, negatively, by
twice the weight of the leftmost bit (which is 2™"). Twice this number is 2", so in effect
we are converting 2"-k to (2"-k)-2" = -k, the desired result. Thus, for the four-bit system,
the number represented in the two's complement realm by the sequence 1010 can be
calculated as -2°+2' = -6.

As indicated earlier, the magnitude of the largest positive integer in an n-bit system is 2"
'-1, and the largest magnitude of a negative number is 2"'. What happens if, as a result of
an addition of two valid numbers, the result is out of the permissible range? In our four-
bit system, this would occur as a result of the operation 5+4. In virtually all computers,
such an event, called an overflow, is detected by the hardware, so that programmers have
the opportunity to specify what, if any, remedial action should be taken. In the two's
complement system, there is a relatively simple solution to the overflow detection
problem. It is based on carries in and out of the sign bit (the leftmost bit). Let us begin
with the addition of positive integers.

Since the sign bit of a positive numbers is 0, when we add two such numbers, there can
never be a carry out of this position. If, however, the result of the addition exceeds the
limit of 2™'-1, there will be a carry out of the n-1th bit into the sign-bit position. For
example, elaborating on the 5+4 example, we have 0101+0100 = 1001. (The value of the
sign bit was changed to 1 by the carry.) Thus, for the addition of two positive numbers,
there is overflow if and only if there is a carry info the sign-bit position, but no carry out
of it. Consider next the adding of two negative numbers.

Since the sign bit of a negative number is 1, adding two such numbers always results in a
carry out of the sign-bit position. If the result of the addition is a valid number, then the
sign bit of the result will also be 1. This can occur only if there was a carry into this
position. Thus, for the valid addition (-3)+(-5) = (-8), we have 1101+1011 = 1000. An
example of such addition with overflow is: (-4)+(-5), which corresponds to 1100+1011 =
10111. In the overflow case, there is no overflow into the sign-bit position. So for the
case of addition of negative numbers, there is overflow if, and only if there is a carry out
of the sign-bit position, but no carry into it. Now consider adding a positive and a
negative number. Since one of the sign bits is a 1 and the other a 0, there will be a carry
out of the sign position if and only if there is a carry into it. For the example (-3)+(5),
corresponding to 1101+0101 = 0010, there is a carry in and a carry out of the sign
position. On the other hand, for the case of (3)+(-5), corresponding to 0011+1011 =
1110, there is no carry in and no carry out of the sign position. For the sum of a positive
and negative number, there can never be any overflow.

Summarizing, then, we see that all cases are covered by the following rule: For the
addition of any two valid numbers expressed in the two's complement system, there is



overflow if and only if the carry out is not equal to the carry in to the sign-bit position.
This condition can be detected by an XOR-gate with inputs corresponding to the carries
in and out of the leftmost bit.

One more situation must be considered. In our initial discussion of two's complements, it
was pointed out that there is a valid negative number without a matching valid positive
number with the same absolute value. In general, this is (-2*"). For our n = 4 example,
this number is -8 (see Figure A.1). This is a perfectly valid number, behaving the same
way as all other negative numbers in addition operations. What happens if we attempt to
negate this number, that is execute the operation -(-2"")? The result would be a positive
number out of range, since 2" is not expressible in an n-bit two's complement system. If
the subtraction method is used, then it is easy to see that there will be a carry out of the
sign position, but no carry in to it. If the two's complementing operation, which is how
negation is accomplished, is carried out using the complement-increment method, the
result of the incrementing part is a carry in to the sign-bit position, but no carry out. If
the iterative circuit method is used, it is not hard to see that a similar simple detection
method exists. In all cases, the behavior of 2™ is unique with respect to the carries
involving the sign bit, so that detection is easily achieved.
When a computer has 32-bit words, it is extremely unlikely that the number 2" will be
encountered in any particular operation. (What are the odds?) But this number will
occasionally appear and be negated. Unless this rare event is provided for, it may result
in unexpected and perhaps catastrophic consequences. This is precisely the kind of
situation that causes embarrassing, costly, and sometimes tragic computer failures.
A.1.4 Integer Conversions to Base 10
Consider first conversions from base b to base 10. Working in base-10 arithmetic, this is
a straightforward process. We simply apply Equation (1). For example, to convert the
base-3 (ternary) number 2102 (the base is often indicated by a subscript, e.g., 2102;) to
decimal, we obtain 2x3* + 1x3? + 2x3° = 65. For an n-digit number, this process requires
a maximum of n(n-1)/2 multiplications. A more efficient procedure, requiring no more
than n-1 multiplications, is derived by repeated factoring of the right side of equation
(1). For the case of 2102, this yields
(2x3 + 1)x3 + 0)x3 +2 = 65.

In the general case we have:

x=(..(((a,,b+a,,)b+a, ;)b +a, )b+ ..+a,)b + a, 2)
This procedure is easily executed starting from within the innermost parentheses and
working out, i.e., multiply the leftmost digit of x by b, then add the next digit of x, then
multiply the result by b, and continue alternately adding a digit of x and multiplying by b.
The process terminates with the addition of a,.
A.1.5 Conversions From Base 10
Consider now the inverse process, the conversion of a number from base 10 to base b. If
we divide both sides of Equation (1) by b, an examination of the right side indicates that
the remainder is a0, the least significant digit of x written in base-b notation. The
quotient is in the same general form as the original equation, but now al is the rightmost
term of the left side. Dividing the quotient by b therefore yields al as the remainder.
Repeating this process generates all of the digits of the base-b representation of x, from



right to left. As an example, consider finding the base-8 (octal) representation of 97110.
We have the following sequence of operations:.

971/8 = 12143/8; 121/8=15+1/8; 15/8 = 1+7/8; 1/8 =0+1/8.
The octal representation of 971 is therefore 1713. (Verify this by using the method of
Equation (2) to convert back to decimal.)
Note that all operations in this process are carried out in the decimal system, which
corresponds to the base of the original number. The previous algorithm, for converting
from base b to base 10 is also executed using decimal arithmetic-- in this case, the system
of the final number. Thus, we now have methods generally applicable to any number
base conversion, and we can choose to operate in the arithmetic of either of the two
systems involved. Suppose it is essential (or very convenient) always to use one
particular base, b*, for all such arithmetic, even where b* is not the base of either of the
systems involved (e.g., b* might be 10 if this is to be a hand computation, or it might be 2
if it is to be executed by a computer). Then we might convert the original number into a
base-b* number, using the division method, and then use the multiply and add method to
convert from b* to the base of the final number. In both cases, we would be operating
with base-b* arithmetic.
A.1.6 Fractions
In a base-b system, we express "radix" fraction (generalization of decimal fraction) x as:
0.al a2... an, where the ai are numbers between O and b-1, and where

x=ab'+ab’+ ...+ab". 3)
In the decimal system, multiplication by 10 is equivalent to moving the decimal point one
position to the right, and division by 10 is equivalent to moving the decimal point one
position to the left. Analogously, it is evident from (1) and (3) that for a number written
in base b, multiplication or division by b has the effect of moving the radix point (the
generalization of the decimal point) one step to the right or left respectively.

To convert the decimal fraction x to base b, we must identify the ai-coefficients in (3).
The key point is to note that if the right side of (3) is multiplied by b, the result is a,, an
integer, added to a sum of fractions totaling less than 1. Hence, the integer part of the
product of x and b is a,. If we multiply the fractional part of this initial product by b, the
result will be a,, and if we continue this process, we generate digits of the base-b
equivalent of x in decreasing order of significance (i.e., from left to right). The procedure
just described is illustrated below by the generation of the binary equivalent of 0.32410 to
three significant figures:

0.324x2 =0.648; 0.648x2 =1.296; 0.296x2 =0.592; 0.592x2 =1.184
Hence, we have 0.01012 as the desired result. (Strictly speaking, we should generate one
extra digit and use it for rounding purposes. In this case, it is clear that the value of the
next digit is 0, so our result is unchanged.)

Conversion of radix fraction y from base b to base 10 can be accomplished efficiently by
factoring the right side of Equation (3) to obtain Equation (4) below (which is analogous
to Equation (2)):

y=(.(a/b+a,)b+a,)b+..+a)b (4)



Note that, in contrast to the analogous procedure for integers based on (2), we start with
the rightmost digit and terminate with division. In the example below we convert the
ternary fraction, 0.1202 to decimal form.

y =(((2/3+0)/3+2)/3+1)/3
Evaluate the expression by starting with the innermost term and working out. We divide
the rightmost digit by 3, add the next digit, divide the result by 3, add the next digit, etc.,
terminating with a final division by 3. The result in this case is 0.580. (Precision for this
procedure depends on the precision of our arithmetic.)

A.1.7 Conversions Between Base b and Base b*

Consider now the case of converting a number from base b to base b*. Using the division
method, we would be operating in base-b arithmetic, repeatedly dividing by the base of
the "destination" system, namely b*. Each such division is equivalent to k divisions by b.
But each of these amounts to moving the radix point one place to the left. Hence, each
division by the destination base consists of moving the radix point k places to the left.
Since the number being divided (the dividend) each time is an integer, the remainder,
which corresponds to a digit of the desired number, is the part of the quotient to the right
of the radix point, i.e., the rightmost k digits of the dividend.

It follows then that to convert a base-b number x to base b*, all we need do is partition the
digits of x into subsequences of length k, starting from the right, and convert each of
these subsequences into the corresponding base-b* digit. For example, to convert x =
10010101112 to octal (8 = 2* -- so k = 3) we group the digits of x as follows:
{001}{001}{010}{111}. Then we convert each group to an octal digit yielding 1127.
Conversions in the reverse direction are correspondingly simple.

To go from base b" to base b, we need only convert each digit of the original number to a
k-digit (don't forget to add leading Os as necessary to fill out the required length) base-b
number. Thus, to convert 6207, to base-3, we replace 6 by 20, 2 by 02, 0 by 00, and 7 by
21 to obtain 20020021,.

A.1.8 Binary, Octal, and Hexadecimal

In return for the simplicity of the binary number system (very simple arithmetic
operations and only two symbols), we must pay the price of writing relatively long
sequences of digits to represent a given number-- more than triple the number of digits
required for a decimal representation. Here is where the techniques just described come
in handy. Since 8 = 2°, it is very easy to convert back and forth between binary and octal
numbers. Thus, we can use octal numbers to express binary numbers in compact form.
For example,

1000111010110110, can be abbreviated by 107266,. (Note that the same technique can
be used to abbreviate any sequence of Os and 1s, even if it does not represent a number.)

Although converting from decimal to binary is a straightforward matter using the division
method, it is a lengthy computation to perform by hand when more than a few digits are
involved. The reader might wish to verify this assertion by converting 97,603 to binary
form (the answer is 10111110101000011). It is much easier to convert first to octal
(obtaining 276,503) and then to binary-- try it! A similar advantage exists when octal is
used as an intermediate stage for conversions from binary to decimal.



In most computers, information is usually in multiples of four-bits (16, 32, and 64 are
common word sizes, and the 8-bit byte is almost universally used). It is therefore often
convenient to abbreviate bit strings in groups of four, using the base 16, or hexadecimal
(generally abbreviated as hex) number system. Then each byte is represented by two hex
numerals. Since there are 16 numerals in hex, as opposed to only 10 in our everyday
decimal system, 6 additional numerals are needed. Rather than invent new symbols, the
common practice is to use the letters A through F to represent the numerals with values
from 10 through 15, respectively. Thus, 506,, corresponds to 1FA, (1x16” + 15x16 +
10).

A.1.9 Binary-Coded Decimal

It is important that computers be able to represent numbers internally in decimal form. In
some cases, where internal arithmetic operations are relatively simple, as is often the case
for commercial data processing, conversions back and forth between decimal and binary
would be more time-consuming than the arithmetic intrinsic to the problem. Hence, it
might be advantageous to have the machine operate internally in decimal. Even where
the internal operations are to be in binary, it is necessary to represent the decimal
numbers that constitute the input to the machine, and it is necessary to generate decimal
numbers as the output. How can this be done, given the assertion made earlier in this
appendix that two-valued signals are much preferred? The answer is to encode each
decimal digit independently as a sequence of binary digits (or bits). Several different
encodings have been used for this purpose, but we confine ourselves here to the most
common, and most straightforward, scheme, which is simply to convert each decimal
digit to its binary equivalent. This scheme, called binar-coded decimal (BCD), requires
four bits per digit. Leading Os are inserted as necessary to fill out the four-bit slots for
digits less than eight in value. Thus, 2089, is represented in BCD as the concatenation
of the four sequences 0010, 0000, 1000, 1001, or 0010000010001001. Note that the
binary representation of 2089 is 100000101001, a 12-bit as opposed to a 16-bit number.
This less efficient use of bits reflects the fact that only 10 of the 16 possible sequences of
the four-bits utilized to represent a decimal digit.

A .1.10 ASCII Code

Although digital computers were originally developed to perform complex numerical
computations, they are currently used for a wide range of other purposes, many of which
involve the processing of symbols other than numbers, particularly alphanumeric
characters. (Indeed the very words you are now reading were typed into a computer
controlled by a word processing program.) It is therefore necessary to have a means for
representing, within a computer, the sort of characters found on a standard typewriter.
Since such data is often circulated among different computers, and may be transmitted
over communications networks, it is useful to standardize the codes used.

The most popular such standard is American Standard Code for Information Interchange
(ASCII, pronounced as' kee). Since 7 bits are used per character, a total of 2’ or 128
different characters can be represented. The first three bits of an ASCII code word
specify a class of characters, and the last four bits indicate the precise character within
that class. For example, the numerals are all prefixed by 011, the four-bit suffix
indicating the particular numeral in BCD. Other characters with prefix 011 include the
colon, semi-colon and question mark. Uppercase letters are prefixed by 100 or 101, and
lowercase letters are prefixed by 110 or 111. For example, 5 is encoded as 0110101, C



as 1000011, D as 1000100, c as 1100011. Various other symbols are prefixed by 010, for
example, 0100000 is a space and 0101110 is a period. A number of ASCII codes are
used for control signals such as "end of transmission", or "carriage return". A major
competitor of ASCII is Extended BCD Interchange Code (EBCDIC), the 8-bit code
originated by IBM.



