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Abstract

This paper analyzes the complexity of the contraction fixed point problem: compute
an ε-approximation to the fixed point V ∗ = Γ(V ∗) of a contraction mapping Γ that
maps a Banach space Bd of continuous functions of d variables into itself. We focus
on quasi linear contractions where Γ is a nonlinear functional of a finite number of
conditional expectation operators. This class includes contractive Fredholm integral
equations that arise in asset pricing applications and the contractive Bellman equation
from dynamic programming. In the absence of further restrictions on the domain of
Γ, the quasi linear fixed point problem is subject to the curse of dimensionality, i.e.,
in the worst case the minimal number of function evaluations and arithmetic oper-
ations required to compute an ε-approximation to a fixed point V ∗ ∈ Bd increases
exponentially in d. We show that the curse of dimensionality disappears if the domain
of Γ has additional special structure. We identify a particular type of special structure
for which the problem is strongly tractable even in the worst case, i.e., the number of
function evaluations and arithmetic operations needed to compute an ε-approximation
of V ∗ is bounded by Cε−p where C and p are constants independent of d. We present
examples of economic problems that have this type of special structure including a
class of rational expectations asset pricing problems for which the optimal exponent
p = 1 is nearly achieved.
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1 Introduction

This paper analyzes the complexity of the contraction fixed point problem: compute an
ε-approximation to the fixed point V ∗ = Γ(V ∗) of a contraction mapping Γ that maps a
Banach space Bd into itself where Bd is a space of continuous functions defined on a com-
pact Sd ⊂ IRd. These problems arise frequently in economics, and include infinite horizon
dynamic programming (DP) and asset pricing problems where V ∗(s) = V ∗(s1, . . . , sd) is
interpreted as a value function that depends on a vector of d state variables (s1, . . . , sd)
each of which can assume a continuum of possible values. Although the space Bd is infinite-
dimensional we refer to d as the dimension of the fixed point problem. Although Banach’s
theorem guarantees that a unique fixed point exists, it is only possible in rare cases to obtain
analytic expressions for V ∗ and it is usually quite difficult even to characterize general prop-
erties of V ∗ (e.g., monotonicity, concavity, etc.). For these reasons there has been increasing
emphasis on the use of numerical methods to compute approximate contraction fixed points
in virtually all fields in economics and finance, including microeconomic models of intertem-
poral decision making under uncertainty, Rust (1997), Judd (1998), econometrics, Rust
(1994), macroeconomics, Stokey and Lucas (1989), Cooper (1999), growth theory, Kydland
and Prescott (1982), and finance and asset pricing, Lucas (1978), Rust (1985), Duffie (1988).

In many applications we would like to be able to compute approximations to extremely
high dimensional problems. In finance there is substantial interest in pricing index options
that are functions of thousands of individual securities: calculation of theoretical values of
these options requires solution of high dimensional optimal stopping problems where d is at
least as large as the number of securities in the index, see Bolye, Broadie and Glasserman
(1997). It is increasingly common to see very high dimensional DP in economic applica-
tions. For example, models of optimal pricing and inventory decisions of retail or wholesale
companies can easily result in DP problems for which d can be many thousands. Hall and
Rust (1999) model a steel wholesaler that carries over 2,000 individual steel products: each
product is described by at least two continuous state variables, namely the current spot price
and quantity on hand. Thus, to model the firm as a whole would potentially require a DP
problem with at least d = 4, 000 continuous state variables. Similarly, Aguirregabiria (1999)
develops a DP model of a Spanish retail supermarket chain that carries over 8,000 separate
products: many U.S. retail outlets carry more than 75,000 products. Thus, it is increasingly
important to find effective algorithms for approximating fixed points to high dimensional
problems where d can be arbitrarily large.

Our analysis focuses on a subclass of quasi linear contraction mappings which can be
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represented as nonlinear functionals of a finite number of conditional expectation operators:

Γ(V )(s) = f(π1(s) + βE1V (s), . . . , πm(s) + βEmV (s)), (1)

where f is a continuous function mapping Rm into R, the πi, i = 1, . . . ,m, are fixed functions
in Bd, and the Ei, i = 1, . . . ,m, are linear conditional expectation operators on Bd, i.e.,

EiV (s) =
∫

Sd

V (t)pi(t|s) dt, (2)

where pi : Sd × Sd → R+, and pi(·|s) is a conditional probability density function on Sd for
each s ∈ Sd. If f satisfies the quasi linearity property described in Section 2, then Γ is a con-
traction mapping on Bd. Many of the fixed point problems that appear in economic applica-
tions are quasi linear. This family includes Fredholm integral equations that arise in rational
expectations models of asset pricing (when m = 1 and f(x) = x) and the Bellman equation
for infinite horizon DP problems (when m > 1 and f(x1, . . . , xm) = max(x1, . . . , xm)).

At least since Bellman (1957), it has been thought that contraction fixed point problems
of the type we are considering are subject to an unavoidable “curse of dimensionality”. Sub-
sequent developments in the theory of computational complexity of continuous problems, see
Traub and Werschulz (1998) for a survey, have formalized the concept of curse of dimension-
ality and have succeeded in determining whether a wide variety of continuous mathematical
problems are subject to this curse. The complexity, comp(ε, d), of a d-dimensional mathe-
matical problem is defined as the minimal cost of computing an ε-approximation in the worst
case using deterministic algorithms.1 If comp(ε, d) depends polynomially on ε−1 and d, we
say the problem is tractable, otherwise it is intractable. If comp(ε, d) depends exponentially
on d, we say the problem suffers the curse of dimensionality.

Chow and Tsitsiklis (1989) confirmed Bellman’s conjecture by proving that the problem
of approximating the fixed point to Bellman’s equation V = Γ(V ) is subject to the curse of
dimensionality. More precisely, they showed that when domain of Γ is sufficiently large (e.g.,
the set Ld ⊂ Bd of all uniformly bounded Lipschitz continuous functions); then the problem
of finding an ε-approximation to the fixed point V = Γ(V ) is intractable. They considered a
general class of Markovian decision problems with continuous state and action spaces. How-
ever their result also implies that the problem of approximating V ∗ for a subclass of MDPs
with only a finite number m of possible actions known as discrete decision processes (DDPs)
is also intractable, since its complexity is at least of order ε−2d. However DDP problems are

1Complexity is also defined for average case and randomized settings. See Traub, Wasilkowski and
Woźniakowski (1988).
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mathematically equivalent to computing the fixed point of the Bellman operator which is
just a special type of quasi linear contraction mapping. Thus, the intractability of the DDP
problem implies that the quasi linear contraction problem (which includes the finite action
MDP problem as a special case), must be intractable as well.

The objective of this paper is to determine circumstances under which it is possible to
break intractability of the quasi linear contraction fixed point problem. As discussed in
Traub and Werschulz (1998), there are two main ways this can be done:

(a) by using randomized algorithms, such as Monte Carlo, or

(b) by restricting attention to problems that have some sort of “special structure”.

Strategy (a) was used by Rust (1997) who showed that a random multigrid algorithm
succeeds in breaking the curse of dimensionality for a subclass of DDP problems.2 Since
DDPs are a subclass of quasi linear contractions, Rust’s result suggests that it may be pos-
sible to use randomization to break the curse of dimensionality for a larger class of quasi
linear contraction mappings. The main work involved in computing a fixed point in either
of these problems is the evaluation of the multivariate integrals defining the conditional ex-
pectations EiV , i = 1, . . . ,m. Although the problem of computing multivariate integrals
for integrands that are in sufficiently large class such as Ld is intractable in the worst case
deterministic setting, it is well known that multivariate integration is tractable when ran-
domized algorithms are allowed. For example the classical Monte Carlo method can be used
to approximate the integral ÊiV (s) as a sample average 1/n

∑n
i=1 V (s̃i) where {s̃1, . . . , s̃n}

are IID draws from the conditional density pi(t|s). The Law of Large Numbers implies that
ÊiV (s) converges to EiV (s) at rate n−1/2 independent of the number of variables.3 The cost
of allowing randomization is that we must be content with the weaker stochastic assurance
that the expected error of the approximate solution is less than ε.

Our paper is about strategy (b). There are two main advantages of this approach. First,
unlike Monte Carlo methods, the algorithms we consider deliver a stronger deterministic

2It is possible to check that the results of Rust (1997) are also valid for the class of problems considered
in this paper.

3Note that computer implementations of the Monte Carlo method use pseudo-random number generators
that attempt to emulate truly IID draws from various distributions. The fact that the observed rate of
convergence of these implementations of the Monte Carlo method is n−1/2 can be taken as evidence that
pseudo-random number generators are able to successfully emulate the behavior of truly IID sequences.
The problem of when the use of pseudo-random sample points does not change the error of Monte Carlo is
addressed in Traub and Woźniakowski (1992).
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worst case assurance regarding the approximation error. Second, we provide sufficient con-
ditions under which there is a deterministic algorithm that uses n quadrature points to
approximate the conditional expectation operators EiV in equation (1) and results in an
approximate fixed point V̂n that, regardless of the dimension d, converges to V ∗ at rate close
to n−1.

We now describe the type of special structure we exploit and how it enables us to break
the curse of dimensionality. Our objective is to approximate V ∗ at an arbitrary point s∗ ∈ Sd.
Note that V ∗ is an implicit function of the objects f , {pi} and {πi}, where f is the function
defining the quasilinear contraction operator in equation (1), the {πi} are the payoff functions
in (1), and the {pi} are the Markov transition densities defining the conditional expectation
operators in (2). We assume that a feasible algorithm for computing an approximate solu-
tion V̂ to V ∗ can only depend on the values of these objects at a finite number of points
{s1, . . . , sn} in the domain Sd. Our worst case analysis treats the objects f and {pi} as fixed,
but allows {πi} to be elements of a set of functions Fd. For any algorithm (which includes
a specific choice for n and the sample points {s1, . . . , sn}) we can determine the worst case
error, i.e., the largest possible value of |V ∗(s∗)−V̂ (s∗)| for {πi} in the set Fd. The complexity
comp(ε, d) is the minimum cost of computing an ε-approximation, where the minimum is
taken over all feasible algorithms. Obviously, the complexity depends on the set of functions
Fd. When Fd = Bd, the (non-compact) set of all continuous, uniformly bounded functions,
the complexity is infinite, i.e., it is not possible to compute an ε-approximation for suffi-
ciently small ε using deterministic algorithms. When Fd = Ld, the compact set of uniformly
bounded Lipschitz-continuous functions, the complexity is finite, but as noted above, there
is a curse of dimensionality — comp(ε, d) is an exponential function of d. We will consider
the case where Fd = Fd,γ, a compact subset of uniformly bounded functions in a weighted
Sobolev space that will be described in more detail later. We will define a specific weighted
norm ‖ · ‖Fd,γ

on the functions in Fd,γ that depends on a parameter γ = (γ1, . . . , γd) that has
the same dimension as the of arguments d of the functions in Fd,γ. The ith component γi

is a weight that determines, for any function π ∈ Fd,γ, how sensitive the norm ‖π‖Fd,γ
is to

variations in si, the i argument of π. If γi is small the norm will be very large if the function
π is highly variable as a function of si. Thus, in order for π to have a small weighted norm
when γi is small, it must be the case that π must be nearly “flat” as a function of si. We
show that the quasi linear contraction fixed point problem becomes tractable in the worst
case setting if

∑∞
d=1 γd < ∞.

Tractability is established by showing that comp(ε, d) takes the form

comp(ε, d) = c(d)n1(ε, d) + n2(ε, d), (3)

where n1(ε, d) is the minimal number of function evaluations, n2(ε, d) is the minimal number
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of arithmetic operations required to compute an ε-approximation to a d-dimensional problem
in the worst case, and c(d) represents the cost of a single function evaluation of π. Clearly,
the problem is tractable if n1, n2 and c all increase polynomially in ε−1 and d. We restrict
attention to problems where c(d) is bounded by a polynomial in d, since if this does not
hold, the problem is automatically intractable. In the quasilinear contract problem, we have
n2(ε, d) = O(n1(ε, d)2), so the key to our argument is to show that n1 is a polynomial in in
ε−1 and d. We provide sufficient conditions under which the problem is strongly tractable,
i.e., where

n1(ε, d) ≤ Cε−p (4)

for constants C and p which are independent of d and ε. The minimal (or the infima of)
values of p for which these inequalities hold is called the strong exponent, see Woźniakowski
(1994) for a precise definition. We provide sufficient conditions under which the strong ex-
ponent is equal to p = 1 which implies that the optimal (uni-dimensional) convergence rate
of n−1 is nearly achieved regardless of the problem dimension d.

We verify that these rates of convergence can be attained in the context of a specific
rational expectations asset pricing example. In this case the quasi linear contraction problem
reduces to a Fredholm integral equation for V ∗, where V ∗(s) represents the value of the asset
given information s, where s is a vector in a d-dimensional state space Sd. The dimension
d could be quite large, since it not only includes a vector of variables that represent the
state of the firm (i.e., its sales, costs, debt, wage costs, market share, and so forth), but it
also includes a large number of market-level variables summarizing the status of the firm’s
chief competitors, and a large number of economy-level variables that affect the overall level
of the stock market (e.g., interest rates, inflation rates, unemployment rates, and so forth).
Suppose that the asset pays a per share dividend of π(s) in state s, and that the state
evolves according to a Markov transition density p and there is a constant risk free interest
rate r > 0. Then the “fundamental value” of the stock is given by

V ∗(s) = π(s) +
1

(1 + r)

∫
Sd

V ∗(t)p(t|s)dt. (5)

In Section 5 we show that the problem of approximating V ∗ is strongly tractable if π satisfies
some mild smoothness conditions and p is a truncated normal density for which certain
parameters related to the eigenvalues of its correlation matrix tend to infinity at a sufficiently
fast rate. We prove that this problem is strongly tractable with strong exponent equal to 1.
That is, the number of function evaluations n(ε, d) necessary to compute an ε-approximation
to V ∗ at a point satisfies n1(ε, d) ≤ Cδε

−1−δ for all δ > 0. This is substantially faster than
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the randomized contraction operator approach considered by Rust (1997). In that algorithm
n1(ε, d) must be of order ε−2 in order to achieve an expected error of ε. Thus, even though
V ∗ is a non-trivial function of all d state variables, the number of sample points necessary
to find an ε-approximation is independent of d. The problem complexity, comp(ε, d), only
depends on d via the cost c(d) of each function evaluation.4 This gives us a double-win:

• convergence is faster than Monte Carlo,

• with a worst case deterministic guarantee.

Although we do not do so here, our results on the tractability of pointwise approximation
of V ∗ can be extended to enable us to prove the tractability of uniform approximation of V ∗.
Consider a function V̂k constructed from a linear combination of k “basis functions” {ρi,k}
whose coefficients are values V̂ evaluated at an appropriate set of sample points {s1, . . . , sk}
in Sd

V̂k(s) =
k∑

i=1

V̂ (si)ρi,k(s). (6)

V̂k will be a uniform ε-approximation to V ∗ provided ‖V ∗ − V̂k‖1 ≤ ε‖V ∗‖2 for some norms
‖ · ‖1 and ‖ · ‖2. The value of k for which this is true obviously depends on ε and d. In order
for the uniform approximation problem to be tractable we must guarantee that k depends
only polynomially on 1/ε and d, and that the time required to evaluate each of the basis
functions depends only polynomially on d. This can be achieved for the same conditions
under which the pointwise approximation problem is tractable, i.e., when the functions V̂
and V ∗ have a particular type of special structure reflected by small norms in the weighted
Sobolev space Fd,γ. Thus, it is sufficient to restrict attention to proving that the problem of
pointwise approximation of V ∗ is tractable.

Section 2 introduces the class of quasi linear contraction mappings, with examples of
how these mappings arise in economic applications. Section 3 reviews recent empirical and
theoretical results on Quasi Monte Carlo (QMC). This is relevant to our results since we
show how a particular QMC algorithm that is based on an approximation algorithm known

4Werschulz (1991) and Heinrich (1998) analyzed the worst case complexity of Fredholm integral equations
for smooth functions and showed that these problems are subject to a curse of dimensionality. However their
results do not necessarily imply that the quasi linear contraction problem suffers the curse of dimensionality
since the class of Fredholm integral equations they consider include problems with more general kernels.
Our analysis only covers a subset of contractive Fredholm integral equations where the kernel takes the form
βp(t|s) where β ∈ (0, 1) and p(·|s) is a conditional probability density function with special structure.
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as the weighted tensor product algorithm (WTP) enables us to exploit the special structure
of integrands in the Sobolev space Fd,γ and break the curse of dimensionality. In Section 4
we present a class of iterative algorithms for computing approximate fixed points to quasi
linear contractions. Section 5 outlines the structure of our argument in the special IID case
where the transition densities pi(t|s) do not depend on s. Section 6 applies these algo-
rithms to the problem of approximating fixed points to an important subclass of quasi linear
mappings, (contractive) Fredholm integral equations. These problems arise in asset pricing
applications such as discussed above, and also in the policy iteration method for solving
DDPs (i.e., Markov decision processes with a finite number of possible actions). Section 7
verifies that under mild restrictions, the multidimensional rational expectations asset pric-
ing problem is tractable with strong exponent equal to p = 1. Section 8 provides a short
conclusion which discusses some of the limitations of our results and offers suggestions for
future research in this area. The appendix contains the more technical definitions and proofs.

2 The Quasilinear Contraction Problem

Definition 1. A function f : IRm → IR is quasi linear if:

1. f is continuous and nondecreasing in each argument,

2. For all α ∈ R we have f(x + α~e ) = f(x) + α where ~e = [1, 1, . . . , 1]T ∈ IRm. 2

Examples:

1. Linear functions. Let f be given by

f(x) =
m∑

k=1

ckxk, (7)

where ck ≥ 0, and
∑m

k=1 ck = 1.

2. Max function. Let f be given by

f(x) = max
k=1,2,...,m

xk. (8)
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3. Smoothed Max function. Let fσ be given by

fσ(x) = σ ln

(
m∑

k=1

exp (xk/σ)

)
(9)

for a nonnegative σ.

The direct use of (9) is not recommended in computation due to overflow problems for
small σ. Note, however, that

fσ(x) = max
k=1,2,...,m

xk + σ ln

(
m∑

i=1

(
exp

(
(xi − max

1≤k≤m
xk)/σ

)))
.

This formula can be used for computation of fσ(x) without problems of overflow since
xi − maxk=1,2,...,m xk ≤ 0 and we always compute the exponential for a non-positive
argument. Observe also that

0 ≤ fσ(x)− max
k=1,2,...,m

xk ≤ σ ln m, (10)

and therefore limσ→0 fσ(x) = max1≤k≤m xk.

4. “Social Surplus functions”. Let fσ be given by

fσ(x) =
∫
IRm

max
k=1,2,...,m

[xk + σξk] q(ξ1, . . . , ξm)dξ1 · · · dξm, (11)

where q(ξ1, . . . , ξm) is a probability density over IRm which has finite absolute first
moments. This class of functions was introduced in McFadden (1981). The adjective
“Social Surplus” reflects the interpretation of fσ(x) as the expected utility of a pop-
ulation of agents indexed by ξ = (ξ1, . . . , ξm) who face m possible choices, where the
utility of choice k is xk + σξk. The smoothed max function (9) is a special case of (11)
when q is the product of m appropriately standardized univariate Type III extreme
value distributions, i.e.,

q(ξ1, . . . , ξm) =
m∏

i=1

exp{−(ξi + γ)} exp {− exp{−(ξi + γ)}}

where γ ' .577216 . . . is Euler’s constant.
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As noted in Section 1, Bd denotes the Banach space of continuous functions V on a compact
set Sd ⊂ IRd with nonempty interior equipped with the sup-norm, ‖V ‖ = sups∈Sd

|V (s)|.
Let

πk : Sd → IR for k = 1, 2, . . . ,m (12)

be elements of Bd, and let

pk : Sd × Sd → IR+ for k = 1, 2, . . . ,m (13)

be Markov transition densities which are weakly continuous in their second argument. That
is, pk(·|s) is a probability density for each s ∈ Sd and has the property that for each V ∈ Bd

we have EkV ∈ Bd, where

EkV (s) =
∫

Sd

V (t)pk(t|s) dt. (14)

Definition 2. A mapping Γ : Bd → Bd is quasi linear if Γ is given by:

Γ(V )(s) = f(π1(s) + βE1V (s), . . . , πm(s) + βEmV (s)), (15)

where f : Rm → R is a quasi linear function, and β ∈ (0, 1).

Examples:

1. Fredholm Integral Equations

When m = 1 and f(x) = x we have

Γ(V )(s) = π(s) + β EV (s), ∀ s ∈ Sd. (16)

Thus Γ is a linear operator in this case. It is easy to see that the fixed point problem
V = u + βEV is equivalent to solving a Fredholm equation of the second kind with
kernel k(t, s) = βp(t|s). Equations of this form arise in rational expectations theories
of asset pricing, see, for example, Lucas (1978) or Tauchen and Hussey (1991). Much is
known about the complexity of computing approximate solutions to Fredholm integral
equations with general kernels, see Werschulz (1991) and Heinrich (1998) for surveys
of deterministic and stochastic complexity bounds for this problem. In the case of
general kernels, the results in Werschulz (1991) show that the problem is intractable
in the worst case using deterministic algorithms. By exploiting the special structure
of the kernel for the class of Fredholm integral equations combined with additional
special structure on the functions πi and pi (to be defined shortly) we will be able to
show that the fixed point problem, and the associated Fredholm problem, is strongly
tractable.
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2. Bellman operators.

We take f(x) = max[x1, . . . , xm] and obtain

Γ(V )(s) = max [π1(s) + βE1V (s), . . . , πm(s) + βEmV (s)] .

The associated fixed point equation, V = Γ(V ) is known as Bellman’s equation, the
fundamental equation underlying infinite horizon Markovian decision problems (see,
e.g., Blackwell (1965) and Denardo (1967)).

We stress that this function f corresponds to the case of finitely many choices of ac-
tions, and the case of a continuous choice of actions is not addressed. But even this
restricted case poses difficulties for our analysis since our results depend on the ability
to exploit smoothness properties of the function Γ(V ). Even if the functions πk and pk

are very smooth with respect to s, the function Γ(V ) will generally only be a Lipschitz
continuous function of s due to the presence of “kinks” induced by the max operator.
One possible solution to the problem is to approximate V ∗ via Howard’s (1960) policy
iteration algorithm. The algorithm consists of alternating policy improvement and pol-
icy valuation steps and is globally convergent. Each policy valuation step is equivalent
to the solution of a Fredholm integral equation. We provide sufficient conditions for
the tractability of approximating the fixed point to a class of Fredholm integral equa-
tions in Section 6. Assuming that the number of policy iterations required to converge
grows only polynomially in d, it is possible to use an approximate policy iteration algo-
rithm to approximate the fixed point V ∗ to Bellman’s equation. This requires showing
that the approximate policy iteration algorithm will converge provided the value func-
tion at each approximate policy valuation step is approximated sufficiently accurately.
Another possible solution is to smooth the Bellman operator as discussed below.

3. Smoothed Bellman Operators.

We take fσ(x) = σ ln(
∑m

k=1 exp(xk/σ)) and obtain

Γσ(V )(s) = σ ln

[
m∑

k=1

exp
{

1

σ
[πk(s) + βEkV (s)]

}]
. (17)

The function Γ(V ) is as smooth as πk and pk. From (10) we conclude

0 ≤ Γσ(V )(s)− Γ(V )(s) ≤ σ ln m, ∀ s ∈ Sd,

and therefore the Bellman operator is a uniform limit of smoothed Bellman operators:
Γ = limσ→0 Γσ. This justifies the name of Γσ as the smoothed Bellman operator. Fixed
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point problems with smoothed Bellman operators arise in econometric applications, see
e.g., Rust (1994).

4. Smoothed Bellman Operators via Social Surplus Functions.

A wider class of smoothed Bellman operators can be defined for the class of social
surplus functions fσ given in equation (11),

Γσ(V )(s) =
∫
IRm

max
k=1,...,m

[πk(s) + βEkV (s) + σξk]q(ξ1, . . . , ξm)dξ1 · · · dξm. (18)

It is obvious from (18) that Γ = limσ→0 Γσ. While our analysis of the complexity of the
quasi linear fixed point problem explicitly considers the numerical integration problem
underlying the evaluation of the conditional expectation operators, Ek, it abstracts
from the integration problem defining the quasi linear function in (18). Thus, we will
assume that the function f in equation (15) can be evaluated exactly, such as in the
case of the smoothed Bellman operators (neglecting potential errors in approximating
exp(x) and log(x) which we presume are of second order relative to errors in multi-
variate integration). Otherwise the analysis becomes even more complicated since we
need to control the approximation error in the quasi linear function f in addition to
the approximation error in Ek.

Theorem 1 Let Γ be a quasi linear mapping given in Definition 2. Then Γ is a contraction,
and the equation

V = Γ(V )

has a unique solution V ∗ in the ball UR = {V ∈ Bd : ‖V ‖ ≤ R } with R ≥ (1 −
β)−1‖f(π1(·), . . . , πm(·))‖, and

‖f(π1(·), . . . , πm(·))‖
1 + β

≤ ‖V ∗‖ ≤ ‖f(π1(·), . . . , πm(·))‖
1− β

.

Proof: . The quasi linearity property of f implies that Γ satisfies Blackwell’s (1965) sufficient
conditions for a contraction mapping. However it is actually easier to verify that Γ is a
contraction via a direct calculation. We have ‖Ek(V )‖ ≤ ‖V ‖ and

Γ(V )(s) = Γ(W + V −W )(s) ≤ Γ(W + ‖V −W‖~e )(s) = Γ(W )(s) + β‖V −W‖,

using the properties 1 and 2 in Definition 1 above. Repeating the same argument, but
interchanging V and W we get

|Γ(V )(s)− Γ(W )(s)| ≤ β‖V −W‖, ∀ s ∈ Sd.
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Since β < 1, Γ is a contraction mapping.
By Banach’s theorem, the unique solution of V = Γ(V ) in UR exists if Γ(UR) ⊂ UR. The

last inclusion holds since

|Γ(V )(s)| ≤ f (π1(s) + β‖V ‖, . . . , πm(s) + β‖V ‖) = f(π1(s), . . . , πm(s)) + β‖V ‖.

Hence, for V ∈ UR we have

‖Γ(V )‖ ≤ ‖f(π1(·), . . . , πm(·))‖ + β R ≤ R

due to the condition on R. The bounds on the norms of V ∗ easily follow from the pointwise
estimates

−β‖V ∗‖+ f(π1(s), . . . , πm(s)) ≤ V ∗(s) ≤ β‖V ∗‖+ f(π1(s), . . . , πm(s)).

2

Quasilinear mappings simplify if all Markov transition densities are the same, pk ≡ p.
Then the second property of the quasi linear function f yields

Γ(V )(s) = π(s) + β
∫

Sd

V (t)p(t|s) dt, with π(s) = f (π1(s), . . . , πm(s)) . (19)

If we further assume that the Markov transition density does not depend on s, p(t|s) = p(t),

then
Γ(V )(s) = π(s) + β

∫
Sd

V (t)p(t) dt. (20)

In the later case, the fixed point V ∗ = Γ(V ∗) differs from π only by a constant, i.e.,

V ∗(s) = π(s) +
β

1− β

∫
Sd

π(t)p(t)dt. (21)

Hence, computation of V ∗ reduces to the computation of a single multivariate integral in
this case. This indicates that quasi linear contractions are computationally at least as hard
as multivariate integration.

Definition 3. The quasi linear contraction problem is defined as the problem of com-
puting an ε-approximation to V ∗(s∗) at a given point s∗ ∈ Sd where V ∗ is the unique solution
to the contraction fixed point problem

V = Γ(V ), (22)
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and Γ is a quasi linear contraction mapping satisfying Definition 2.

More precisely, we want to compute an ε-approximation V̂ (s∗) such that

|V ∗(s∗)− V̂ (s∗)| ≤ ε max ( ‖V ∗‖, |||V ∗||| ) . (23)

Here ||| · ||| is a norm which maybe be different than the usual sup-norm ‖·‖ on the space Bd.
As we shall see later, the choice of the norm ||| · ||| is very important and our results on the
strong tractability of the quasi linear contraction problem depend on this norm. The only
restriction on the norm ||| · ||| is that |||V ∗||| is well defined. Note that if we choose ||| · ||| such
that |||V ∗||| is much larger than ‖V ∗‖ then the problem of computing an ε-approximation is
easier.

3 Strong Tractability of Multivariate Integration

As we will see later multivariate integration is the key “subproblem” of the quasi linear
contraction problem and the potential source of a curse of dimensionality. In this section we
review what is currently known about the complexity of multivariate integration, summa-
rizing the circumstances under which the curse of dimensionality arises and when it can be
“broken”. As already noted in the introduction, there are two main ways that this can be
done: a) via randomized methods such as Monte Carlo, or b) by exploiting special structure
of particular classes of integrands.
Consider the problem of computing the integral I(f) given by

I(f) =
∫

Sd

f(x)dx, (24)

where for concreteness we assume that Sd is the d-dimensional cube Sd = [0, 1]d. It has long
been known that multivariate integration is subject to a curse of dimensionality in the worst
case deterministic setting when the integrands are allowed to be members of a sufficiently
general normed space of functions of d variables, Fd. Let the norm of the space Fd be denoted
by ‖ · ‖Fd

. The curse of dimensionality can be explained in terms of the error bound en(Fd)
given by

en(Fd) = inf
In

sup
f∈Fd,‖f‖Fd

≤1
|I(f)− In(f)|, (25)

where In(f) represents some algorithm for computing an approximate integral using n eval-
uations of the integrand f .
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We now present an example of Fd for which the curse of dimensionality is present. The
space Fd = Cr([0, 1]d) is the set of functions defined on Sd which are r-times Frechet contin-
uously differentiable. That is, we assume that for any multi-index α = [α1, α2, . . . , αd] with
nonnegative integers αi, such that |α| := α1 + . . . + αd ≤ r, we have that

Dαf =
∂|α|

∂α1x1∂α2x2 · · · ∂αdxd

f

is continuous. The norm of f in Cr([0, 1]d) is defined as the maximal value of derivatives of
f up to order r,

‖f‖Cr([0,1]d) = max
α, |α|≤r

max
x∈Sd

|Dαf(x)|.

Bakhvalov (1959) showed that for the space Fd we have en(Fd) = Θ(n−r/d) and the complexity
of the integration problem is given by

comp(ε, d) = Θ

(
c(d)

(
1

ε

)d/r
)

, (26)

where c(d) is the cost of a single evaluation of f and the notation g = Θ(h) means that the
function g is asymptotically proportional to the function h as ε tends to zero, i.e., g = O(h)
and h = O(g).5

Bakhvalov’s result implies that for fixed r, the complexity depends exponentially on
d, so multivariate integration is subject to an unavoidable curse of dimensionality using
deterministic algorithms. We are interested in the question of whether there are smaller
spaces of functions for which the curse of dimensionality disappears. For sufficiently small
spaces, such as the class of all d-variate polynomials of order at most k, there are analytic
formulas for the integral and the complexity of integration is finite even for ε = 0. In fact,
the complexity is proportional to the number of polynomial terms which is of order dk.
Obviously, we would like to find non-trivial spaces Fd which are practically important, are
as large as possible, and for which the curse of dimensionality for multivariate integration
is not present. We believe that an example of such spaces is the case of weighted Sobolev
spaces Fd,γ which will be discussed below. For these spaces the curse of dimensionality is not
present, and even simple algorithms, such as QMC discussed below, will allow good error
bounds which go to zero as a low degree polynomial in n−1 independently of d.

5Bakhvalov’s original article is in Russian, however version of his theorem and proof can be also found
in books written in English, see e.g., Novak (1988), Traub and Werschulz (1998) or Traub, Wasilkowski and
Woźniakowski (1988).
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Consider the class of Quasi Monte Carlo (algorithms). These are integration algorithms
for which the numerical integral In(f) can be written as a simple weighted sum of the form

In(f) =
n∑

i=1

wi,nf(si,n), (27)

where {wi,n} are n quadrature weights and {si,n} are n sample points in Sd. In the classical
Monte Carlo algorithm (MC) and in Quasi Monte Carlo algorithms (QMC), wi,n = 1/n. The
difference between QMC and MC is that in QMC the sample points are deterministically
chosen by a formula while in MC the sample points are random, independent and identically
distributed (IID) draws from the uniform distribution on [0, 1]d. It has long been known
that the classical Monte Carlo algorithm succeeds in breaking the curse of dimensionality
provided Fd is a set for which the associated standard deviation σ(f) = (I(f 2)− I2(f))1/2 is
polynomially bounded in d. This follows from the fact that

sup
f∈Fd

E1/2

{
|I(f)− n−1

n∑
i=1

f(t̃i)|2
}

=
supf∈Fd

σ(f)
√

n
, (28)

where the expectation is taken with respect to IID sample points {t̃i}.
QMC algorithms differ from the classical Monte Carlo algorithm by attempting to de-

terministically choose a set of n sample points {ti} which are as close to being uniform as
possible. By uniform we mean that the fraction of points lying within any rectangular sub-
region (with sides parallel to the coordinate axes and containing zero) of the d-dimensional
unit cube is as close as possible to the volume (Lebesgue measure) of that subregion. The
discrepancy of a given set of n points {t1, . . . , tn} is a measure of their deviation from uni-
formity. The discrepancy can be measured in various ways, the most commonly used are
L2-discrepancy and L∞-discrepancy. The formal definition of the L∞-discrepancy D∞ is
given by

D∞(t1, . . . , tn) = sup
B∈B

|λn(B)− λ(B)| (29)

where B is the set of all closed subintervals of [0, 1]d (i.e., sets of the form B =
∏d

i=1[0, bi],
bi ∈ (0, 1]), λ(B) = b1b2 · · · bd is the Lebesgue measures of the set B, and λn(B) is the
empirical measure of B:

λn(B) =
1

n

N∑
i=1

1B(ti), (30)

where 1B is the indicator function B. That is, 1B(t) = 1 if t ∈ B, and 1B(t) = 0 if t /∈ B.
If instead of taking the maximum difference between λn(B) and λ(B) over all B ∈ B we
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compute the distance using the L2 or Lp norms we obtain the L2 and Lp discrepancies, D2 and
Dp, p ≥ 1, respectively. We can do this by noting that there is a one to one mapping between
the set B and the point b ∈ [0, 1]d representing the vector of endpoints of B =

∏d
i=1[0, bi].

Then we can define the Lp discrepancy Dp as

Dp(t1, . . . , tn) =

[∫
[0,1]d

|λn(x)− λ(x)|pdx

]1/p

(31)

As usual, the L2-discrepancy is a special case when p = 2 and the L∞-discrepancy is the
limit of Lp-discrepancies as p →∞.

The Koksma-Hlawka inequality allows us to bound the error of the QMC algorithm by
the discrepancy of the sample points {ti}. It is usually stated in terms of the L∞ discrepancy
as

|I(f)− In(f)| ≤ V (f)D∞(t1, . . . , tn), (32)

where V (f) denotes the variation of the function f (for definition see Niederreiter, 1992).
However in this paper, it is more convenient to work with a version of the Koksma-Hlawka
inequality that can be stated in terms of the L2-discrepancy:

|I(f)− In(f)| ≤ ‖f‖Fd,1
D2(t1, . . . , tn), (33)

where the norm ‖f‖Fd,1
is used instead of the variation V (f).6 More precisely, this bound

applies to f in the Sobolev space Fd,1 of functions that are once differentiable with respect
to each variable. This is a special case of the weighted Sobolev space Fd,γ introduced in the
appendix with γd,i ≡ 1. The norm in the space Fd,1 is denoted by ‖ · ‖Fd,1

. Here we only
mention that for d = 1 we have

‖f‖2
F1,1

= f(0)2 +
∫ 1

0
f ′(t)2 dt, (34)

whereas for d ≥ 2 we have

‖f‖2
Fd,1

=
∑

u⊂{1,2,...,d}

∫
[0,1]|u|

f (u)(xu, 0)2 dxu,

where for u = {u1, u2, . . . , uk} with k = |u| the cardinality of the subset u, xu = (xu1 , . . . , xuk
)

and f (u) = ∂|u|/(∂xu1 · · · ∂xuk
) the partial derivative with respect to xuj

. Finally, (xu, 0) is a

6The L2-discrepancy is also related to the average case error of QMC for the class of continuous functions
equipped with the classical Wiener sheet measure, see Woźniakowski (1991).

17



vector with the jth component equal to xj if j is in u, and 0 otherwise.7

The Koksma-Hlawka inequality makes it clear why we are interested in QMC algorithms
based on sample points that have low discrepancy. Formally, a sequence {si,n}, i = 1, . . . , n,
n = 1, 2, . . . , is said to have low discrepancy if Dp satisfies

Dp(s1,n, . . . , sn,n) ≤ a(d)
logd−1(n)

n
(35)

for some positive a(d), and p = 2 or p = ∞.
Low discrepancy sequences (LDS) have been extensively studied in the last 40 years.

Examples of LDS are Halton, Sobol, Faure, generalized Faure, and Niederreiter sequences, see
Niederreiter (1992), Tezuka (1995), and Drmota and Tichy (1997). However QMC methods
based on LDS have been thought to be inappropriate for high dimensional integration, since
for large d log(n)d−1/n may be substantially larger than 1/

√
n unless n is huge. Therefore,

up until recently it was widely believed that QMC should not be used for, say, d ≥ 12. The
only way to do very high dimensional integration seemed to be via classical Monte Carlo.

Then, in the mid-nineties, computer experiments on financial applications with d = 360
showed that QMC beat MC by factors of 10 to 1000; see Paskov and Traub (1995), Papa-
georgiou and Traub (1996), and Paskov (1997). Generalized Faure points seemed especially
effective in these problems. Many numerical experiments showed that the convergence rate
in these problems was roughly n−1 independently of d. A survey of computer experiments
on financial instruments can be found in Traub and Werschulz (1998). In many economic
and financial applications limited computing capacity and the need for results in “real time”
limits the size of n to a few hundred or thousand, yet as we discussed in the introduction,
the problem dimension d may be in the hundreds or thousands. The (log n)d−1 factor in the
error bound suggests that MC should beat QMC, yet precisely the opposite happened in the
computer experiments.

The existing theory of QMC algorithms was unable to explain these experimental find-
ings. The challenge was to develop a theory that could explain why QMC converges as n−1

7We stress that the space Fd,1 is one of many examples of Sobolev spaces. Even assuming the same
smoothness of functions one can define a different norm for the Sobolev space. For instance, one can take
for d = 1, instead of (34),

‖f‖2 =
∫ 1

0

f(t)2 dt +
∫ 1

0

f ′(t)2 dt,

and use the tensor product norm for general d. This probably corresponds to the most popular Sobolev
space which is often use in the study of differential equations. The results for multivariate integration in this
latter Sobolev space (with weights) are basically the same as for the space Fd,γ as recently shown in Sloan
and Woźniakowski (2000).
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independently of d in these financial applications. This suggests the possibility that the
Koksma-Hlawka inequality is too conservative, and if the type of problems that have been
tested have some form of special structure it might be possible to derive a tighter bound on
the integration error.

What special structure might these problems have? In many economic and financial
problems we are interested in computing expected discounted values of future flows of div-
idends or utilities. Due to the effect of the additive separability and the discounting of
payoffs or utilities, variables representing payoffs in more distant points in the future are
less important than variables representing near-term payoffs. That is, the integrands are
non-isotropic. Could this special structure be used to vanquish the curse of dimensionality
with a worst case guarantee?

Sloan and Woźniakowski (SW,1998) formalized a particular type of special structure of
functions that includes functions that can be represented as discounted sums and quantified
how much it can help. They analyzed the error of integration for functions in the Sobolev
space Fd,γ with a particular weighted norm, ‖f‖d,γ, see the appendix. The symbol γ refers to
a sequence of weights {γd,i} where γd,i moderates the behavior of the functions of d variables
with respect to the ith variable. The weight γd,i enters the norm inversely so that if an
element of f has weighted norm, say, at most 1 then small γd,i means that the function f is
almost “flat” with respect to the ith variable. If we reorder the arguments of f(x1, . . . , xd)
to have non-increasing weights γd,i, then this is equivalent to assuming that arguments with
successively higher indices have monotonically declining effects on the values of f . One can
show that various parametric families of functions commonly used in economics, e.g., Cobb-
Douglas production functions, belong to the class Fd,γ.

SW showed that there exist QMC algorithms for which the curse of dimensionality is not
present in the worst case under certain conditions on {γd,i}. In order to summarize their key
results, which are directly relevant for our analysis in this paper, we first recall the notions
of tractability and strong tractability for multivariate integration (see Woźniakowski (1994)
for a more in-depth discussion). Tractability can be defined in terms of the error bounds
en(Fd). For n = 0 we do not sample the functions, and we set e0(Fd) = ‖I‖ as the initial
error. Suppose we want to reduce the initial error by a factor ε ∈ (0, 1). Let n = n(ε, d) be
the minimal n for which

en(Fd) ≤ ε e0(Fd).

We say that integration is tractable in Fd iff n(ε, d) can be bounded by a polynomial in d and
ε−1, and strongly tractable iff n(ε, d) can be bounded by a polynomial only in ε−1. Otherwise,
we say it is intractable.
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For simplicity, we present results by assuming that γd,i = γi for the weighted Sobolev
space Fd,γ. Then integration is strongly tractable in Fd,γ iff

∞∑
i=1

γi < ∞, (36)

and integration is tractable in Fd,γ iff

lim sup
d→∞

∑d
i=1 γi

log d
< ∞. (37)

SW proved this result for QMC algorithms, and Novak and Woźniakowski (1999b) proved it
for arbitrary algorithms. Furthermore, if we consider the classical unweighted Sobolev space
Fd,γ with γi ≡ 1 then the complexity of integration depends exponentially on d and the curse
of dimensionality is present.

If (36) holds then the number, n(ε, d), of function evaluations plus arithmetic operations
needed to compute an ε-approximation in the worst case setting satisfies

n(ε, d) ≤ C ε−p (38)

where both C and p are independent of d and ε, and p ∈ [1, 2]. This result shows that for
problems with this type of special structure, the curse of dimensionality is not present even
in the worst case setting, and the rate of convergence is at least as fast as the classical Monte
Carlo algorithm. It is also known, due to Hickernell and Woźniakowski (1999), that

∞∑
i=1

γ
1/2
i < ∞ implies p∗ = 1, (39)

where p∗ is the infimum of p satisfying (38). Hence, with a more restrictive condition on γi

we have the same rate of convergence as for the one-dimensional case.
The proofs of these results are non-constructive and they do not specify for which al-

gorithms the bound (38) holds. If condition (39) on the weights is replaced by a stronger
condition,

∞∑
i=1

γ
1/3
i < ∞, (40)

then an algorithm satisfying (38) with p almost 1 has been constructed. This is the weighted
tensor product (WTP) algorithm of Wasilkowski and Woźniakowski (1999). The WTP algo-
rithm is defined for arbitrary multivariate linear problems and its definition can be found in
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the appendix. We will use the WTP algorithm to approximate the conditional expectation
operators Ei entering the quasi linear mapping Γ. We provide sufficient conditions under
which the conditional expectation operators Ei map Fd,γ into itself and the conditional ex-
pectation problem is strongly tractable. Sections 4 and 5 will use this result and the WTP
algorithm as the basis for an algorithm for solving the quasi linear contraction fixed point
problem.

4 Algorithms

In this section we consider various algorithms for solving the quasi linear contraction problem.
We begin by assuming for a moment that we can evaluate Γ(W )(s∗) exactly for a given
function W . Then we can solve (22) by the simple iteration

Vi(s
∗) = Γ(Vi−1)(s

∗), i = 1, 2 . . . , (41)

where V0 is the initial approximation of the solution V . For simplicity we take V0 = 0.
Clearly,

‖Vi − V ∗‖ ≤ βi ‖V ∗‖, ∀ i.

Hence Vi converges to the fixed point V ∗. Let

ε1 = ε
max ( ‖V ∗‖, |||V ∗||| )

‖V ∗‖
. (42)

We compute an ε-approximation A(s) = Vn(s) if βn ≤ ε1 which holds for

n =

⌈
ln 1/ε1

ln 1/β

⌉
. (43)

Observe that the formula for the number of steps n is formally not constructive since it
depends on the norms of the unknown solution V ∗. However, we have ε1 ≥ ε and we may
bound n by replacing ε1 by ε, n ≤ dln(1/ε)/ ln(1/β)e. The latter bound is constructive.

If β is not too close to 1, the number n of steps is quite reasonable. In this paper we
assume that this is indeed the case. A number of estimates presented in this paper have
unspecified factors which depend on β. These factors are of order 1 if β is not too close
to 1. The case of β close to 1 is also of interest although it is not studied in this paper.
For β close to 1, the iteration (41) as well as all its modifications studied in this paper can
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be significantly improved for moderate values of d and ε−1, and the number of steps can
be proportional to ln 1/(1− β) as shown in Sikorski and Woźniakowski (1987), and Huang,
Khachiyan and Sikorski (1999).

Thus, as long as Γ(Vn)(s∗) can be computed exactly, the quasi linear contraction prob-
lem can be solved quite efficiently. However, the assumption on the exact computation
of Γ(Vn)(s∗) is not realistic. Indeed, the computation of Γ(Vn)(s∗) requires in particular
the computation of the d-dimensional integrals with weights pk(·|s∗). This can be done, in
general, only approximately.

Assume then that instead of (41) we can compute the perturbed sequence

Vi(s
∗) = Γ(Vi−1)(s

∗) + δi−1(s
∗), with |δi−1(s

∗)| ≤ δi−1‖Vi−1‖, (44)

for some nonnegative δi−1. We will see later that δi−1 corresponds to the quadrature error and
can be made sufficiently small by taking sufficiently many sample points in the quadrature
formula. For i = 1, we have V0 = 0 and there is no error in integration. Hence, δ0 = 0.

It is natural to ask how small δi−1 should be to preserve the global convergence property
of the sequence (41). In what follows, we assume that

β + δi−1 ≤ β < 1, ∀ i = 1, 2, . . . . (45)

We have

‖Vi − V ∗‖ ≤ β ‖Vi−1 − V ∗‖+ δi−1‖Vi−1‖ ≤ (β + δi−1)‖Vi−1 − V ∗‖+ δi−1‖V ∗‖
≤ β ‖Vi−1 − V ∗‖+ δi−1‖V ∗‖.

This yields

‖Vi − V ∗‖ ≤ β
i ‖V ∗‖+

i−1∑
j=0

β
i−1−j

δj

 ‖V ∗‖.

If we set

β
n ≤ ε1/2 which holds for n =

⌈
ln 2/ε1

ln 1/β

⌉
,

and
β

n−1−i
δi ≤

ε1

2n
, i = 0, 1, . . . , n− 1,

then A(s) = Vn(s) is an ε-approximation since

‖Vn − V ∗‖ ≤ ε1‖V ∗‖ = ε max(‖V ∗‖, |||V ∗|||).
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Observe that the number n of steps is still reasonable if we choose β close to β, and β is
not too close to 1. The perturbation parameters δi can be defined as

δi ≤
β

i
ln 1/β

ln 2/ε1 + ln 1/β
≤ ε1

2nβ
n β

i+1
. (46)

Hence, δi may mildly depend on ε1, and should decrease geometrically with i. This means
that we need more accuracy as we go along, and this is quite natural.

Knowing how much we can perturb the original simple iteration (41) we are ready to re-
place multivariate integrals in Γ(V ) by quadrature formulas. We approximate the conditional
expectation Ek given by (14) by quadrature formulas

Êk,j(V )(s) =
j∑

i=1

ai,j,k(s)V (ti,j,k) s ∈ Sd, (47)

which use the j function values V . Here, ai,j,k(s) are real numbers and ti,j,k are sample
points from Sd. For instance, we can take ai,j,k(s) = pk(si|s)/j and ti,j,k = si for some
sample points si. For Sd = [0, 1]d we can take si as independent random points which are
uniformly distributed over [0, 1]d. In this case, Êk,j corresponds to the classical Monte Carlo
algorithm. We may also take si as low discrepancy deterministic sample points. In this case,
Êk,j corresponds to a quasi-Monte Carlo algorithm.

The quality of the quadrature formula Êk,j will be measured by its error. We assume
that εj(V ) is an upper bound on the quadrature error,∣∣∣Ek(V )(s)− Êk,j(V )(s)

∣∣∣ ≤ εj(V ), ∀ s ∈ Sd, k = 1, 2, . . . ,m. (48)

We are ready to modify the algorithm (41) by replacing the weighted integrals Ek(Vi)(s
∗)

by the quadratures Êk,ji
(Vi)(s

∗). Here, the not yet specified sequence {ji} tells us how many
sample points are used in the quadrature formulas. The choice of {ji} will depend on the
errors εj(V ).

The modified sequence (41) is now formally given by

Vi(s
∗) = f

(
π1(s

∗) + βÊ1,ji−1
(Vi−1)(s

∗), . . . , πm(s∗) + βÊm,ji−1
(Vi−1)(s

∗)
)
, ∀ i = 1, 2, . . . .

(49)
We are ready to prove

Theorem 2 . Assume that the quadrature errors satisfy

εji
(Vi) ≤ min

1− β

2
,

(
1+β

2

)i
ln 2

1+β

β
(
ln 2

ε1
+ ln 2

1+β

)
 ‖Vi‖ (50)
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for i = 1, 2, . . . and n = d(ln 2/ε1)/(ln 2/(1 + β))e.
Then A(s∗) = Vn(s∗) given by (49) is an ε-approximation to V ∗(s∗).

Proof: It is easy to check that (49) is of the form (44) with

δi−1 = β
εji−1

(Vi−1)

‖Vi−1‖
.

Let β = (1+β)/2. From (50) we conclude that (45) as well as (89) hold and therefore A(s∗)
is an ε-approximation. 2

We now discuss the cost of the algorithm A(s∗) = Vn(s∗) given by (49) and Theorem 2
with

n =

⌈
ln 2/ε1

ln 2/(1 + β)

⌉
. (51)

We assume that we can compute the values of the functions πk, k = 1, 2, . . . ,m, and f at any
point as well as that we can perform arithmetic operations. Let the cost of one evaluation of
a function πk be c(πk) and let the cost of one evaluation of the function f be c(f). Observe
that πk is a function of d variables and therefore the cost c(πk) may depend on d. Let
c(d) = maxk=1,...,m c(πk). Similarly, f is a function of m variables and therefore the cost
c(f) may depend on m. We assume that the cost of one arithmetic operation is taken as
unity. We also assume that the sample points ti,ji,k as well β ai,ji,k(s) are “precomputed”.
Usually, these precomputed numbers depend on the Markov transition densities pk(·|s) and
may require a number of evaluations of pk(·|s). Since this should be done once for a given
ε we do not include the cost of generating these precomputed numbers. This is a typical
assumption in complexity analysis, see Traub, Wasilkowski and Woźniakowski (1988) and
Novak and Woźniakowski (1999a) where this point is fully discussed. We also stress that
precomputing significantly simplifies when we use the WTP algorithm, see the appendix.

We now explain in detail how A(s∗) can be computed. For i = 1, 2, . . . , n, and s ∈ Sd

denote

Vi(s) = f
(
π1(s) +

ji−1∑
p=1

βap,ji−1,1(s)Vi−1(tp,ji−1,1), . . . , πm(s) +
ji−1∑
p=1

βap,ji−1,m(s)Vi−1(tp,ji−1,m)
)
.

(52)
Observe that for i = 1 we have V0 = 0 and the sample points tp,j0,k are not needed. This
corresponds formally to j0 = 0. Let

Tε,d =
{

tp,ji−1,k : i ∈ [2, n], p ∈ [1, ji−1], k ∈ [1, m]
}

(53)

24



denote all integration sample points used in (52), and let |Tε,d| denote the cardinality of the
set Tε,d. Clearly,

|Tε,d| ≤ m (j1 + j2 + · · ·+ jn−1) . (54)

Furthermore, if we use nested integration sample points, {tp,ji−1,k} ⊂ {tp,ji,k} then

|Tε,d| ≤ m jn−1.

If the points {tp,j,k} are the same for all k = 1, . . . ,m, then

|Tε,d| ≤ jn−1.

In order to compute A(s∗) = Vn(s∗) we need to compute Vn−1 at the sample points tp,jn−1,k.
This can be achieved if we know Vn−2 at the sample points tp,jn−2,k and so on. Therefore we
compute successively V1, V2, . . . , Vn−1 at all the sample points of the set Tε,d, and then we
can compute the value Vn(s∗).

More specifically, we first compute πk(x) for all x ∈ Tε,d ∪ {s∗} and k ∈ [1, m] at cost
at most m(1 + |Tε,d|) c(d). To compute Vi(x) for all x ∈ Tε,d, we perform 2ji−1m arithmetic
operations and one evaluation of the function f at cost (2ji−1m + c(f))|Tε,d|. Finally we
compute Vn(s∗) at cost 2jn−1m + c(f). Then cost(A) of computing A(s∗) is

cost(A) = m(1 + |Tε,d|) c(d) + (1 + n|Tε,d|)c(f) + 2m|Tε,d|
n∑

i=1

ji−1 + 2jn−1m

This means that the cost of the algorithm A crucially depends on the cardinality of Tε,d and
on the values of ji which, in turn, depend on the efficiency of quadrature formulas (47). More
precisely, the cost of A depends for which indices j we can guarantee that the integration
error εj(V ) satisfies (50). Note that (50) holds if we set

εji
(Vi) = Cβ

(
1 + β

2

)i ‖Vi||
ln ε−1

1

(55)

for some Cβ depending only on β. Let

N(ε, d) = j1 + j2 + · · ·+ jn−1 (56)

denote the total number of integration steps needed to computed A(s∗). Then the cost of
the algorithm A can be rewritten as

cost(A) = O
(
N(ε, d)

(
m c(d) + (ln ε−1) c(f)

)
+ N2(ε, d) m

)
(57)

25



with the big O-factor depending only on β.
The essence of (57) is that the cost of the algorithm A depends polynomially on N(ε, d).

In fact, the dependence is roughly linear in N(ε, d) in terms of the cost of c(d) and c(f) and
quadratic in N(ε, d) in terms of the cost of arithmetic operations. Typically, the cost c(d) or
c(f) is much larger than unity and therefore the total cost can be proportional to N(ε, d).
Hence, as long as N(ε, d) is not too large the cost of algorithm A is reasonable.

The quantity N(ε, d) measures the difficulty of approximating the conditional expecta-
tions Ek . From the perspective of computing high dimensional fixed points where d is large,
the best possible case is where N(ε, d) can be bounded by a polynomial in ε−1 independent
of d.

Suppose we want to compute an ε-approximation to Ek(V )(s) for all s ∈ Sd and for all
functions V from a normed space Fd which is a subset of Bd. Let |||V ||| = ‖V ‖Fd

be the

norm of the space Fd. Let n = n(ε, d) be the smallest integer for which there exists Êk,n of
the form (47) such that

|Ek(V )(s)− Êk,n(V )(s)| ≤ ε ‖V ‖Fd
, ∀ s ∈ Sd, V ∈ Fd, k ∈ [1, m].

We say that the conditional expectation problem is strongly tractable8 in Fd if there exist
nonnegative C and p such that

n(ε, d) ≤ C ε−p, ∀ ε ∈ (0, 1), d = 1, 2, . . . . (58)

The smallest (or infimum of) exponent p in the latter bound is called the the strong exponent
of the conditional expectation problem.

It seems natural to extend this definition to the quasi linear contraction problem. We
say that the quasi linear contraction problem is strongly tractable iff there exist nonnegative
numbers C, p and p1 such that the cost of computing an ε-approximation can be bounded
by

C
(
[c(d) + c(f)] ε−p + ε−p1

)
.

Hence, p is the exponent of ε−1 which tells us how many evaluations of πi and f are needed,
and p1 is the exponent of ε−1 which tells how many arithmetic operations are needed to solve
the quasi linear contraction problem. The smallest (or infima of) exponents p and p1 are
called the strong exponent of information and the strong exponent of arithmetic operations

8It is also reasonable to study the case of tractability in which we permit polynomial dependence on d.
For simplicity the focus of our attention in this paper is on strong tractability.

26



of the quasi linear contraction problem.9

It is easy to check that strong tractability of the conditional expectation problem in Fd

implies strong tractability of the quasi linear contraction problem as long as Vi and the
solution V ∗ of the quasi linear contraction problem belong to the space Fd. Indeed, define

ji = C

Cβ
‖Vi‖
‖Vi‖Fd

(
1 + β

2

)i
1

ln ε−1
1

−p

(59)

with C and p given by (58), and Cβ by (55). Then there exists Êk,ji
of the form (47) such

that

|Ek(Vi)(s)− Êk,ji
(Vi)(s)| ≤ Cβ

(
1 + β

2

)i ‖Vi‖
ln ε−1

1

.

Hence (55) is satisfied. We now estimate N(ε, d) for ji given by (59). Then

N(ε, d) = O

(
C

(
max
i∈[1,n]

‖Vi‖Fd

‖Vi‖

)p (
ε−1
1 ln ε−1

1

)p
)

.

Using the definition of ε1, see (42), we have

N(ε, d) = O

(
C

(
max
i∈[1,n]

‖Vi‖Fd

‖Vi‖
‖V ∗‖

max(‖V ∗‖, ‖V ∗‖Fd
)

)p (
ε−1 ln ε−1

)p
)

with the big O-factor depending only on β. Note that ‖V ∗‖ is of order ‖Vi‖. Hence ‖V ∗‖/‖Vi‖
can be dropped from the last maximum at the expense of enlarging the factor in the big O
notation.

We summarize this as well as the previous analysis in

Theorem 3 . Algorithm A computes an ε-approximation to the solution of the quasi linear
contraction problem at cost

cost(A) = O
(
c(d) m N(ε, d) + c(f) N(ε, d) ln ε−1 + m N2(ε, d)

)
9For many linear problems, we can guarantee that p1 = p. This is due to the fact that there exists a linear

optimal error algorithm that requires the same order of arithmetic operations as the number of information
evaluations, see Traub and Werschulz (1998) for a survey. In our case, we have a nonlinear problem for which
it may happen that p and p1 are different. In fact, it may be a tradeoff between the cost of information
and arithmetic operations. That is, it may happen that with the minimal number of information evaluation
we must perform significantly more arithmetic operations, whereas the use of more information evaluations
may allow to reduce the number of arithmetic operations. There are examples of such nonlinear problems,
see Novak and Woźniakowski (1999).
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where N(ε, d) is given by (56). Suppose that

M = sup
d,i=1,2,...

‖Vi‖Fd

max(‖V ∗‖, ‖V ∗‖Fd
)

(60)

is finite. Then strong tractability of the conditional expectation problem in Fd with (58)
implies strong tractability of the quasi linear contraction problem and the cost of the algorithm
A satisfies

cost(A) = O
(
c(d) m C Mp ε−p lnp ε−1 + c(f) C Mp ε−p lnp+1 ε−1 + m C2 M2p ε−2p ln2p ε−1

)
with the big O-factor depending only on β.

Hence, the strong exponent of the quasi linear contraction problem is at most equal to
the strong exponent of the conditional expectation problem whereas the strong exponent of
arithmetic operations of the quasi linear contraction problem is at most twice the strong
exponent of the conditional expectation problem.

Theorem 3 relates strong tractability of the conditional expectation problem and the quasi
linear contraction problem as long as we know that Vi and V are in the space Fd and the
bound M of (60) is finite. So far we only know that Vi and V ∗ belong to the Banach space
Bd of continuous functions. Let us then take Fd = Bd. As noted in the introduction, if
the functions in Bd are only continuous, the problem is not only intractable, it is insoluble
for sufficiently small ε since the integration error en(Fd) do not converge to zero as n →∞
when we have the freedom to choose a worst case integrand from the class of all continuous
functions, see e.g., Traub, Wasilkowski and Woźniakowski (1988). If we want to use the space
Bd, one possible solution is to follow Rust (1997) and switch to the randomized setting in
which the bound (48) is understood as the expected error with respect to randomized sample
points. In this paper we stay with the worst case setting and deterministic algorithms.
Therefore to obtain strong tractability we must explore additional properties of the quasi
linear contraction problem so that the approximations Vi and the solution V ∗ belong to
spaces Fd for which the conditional expectation problem is strongly tractable.

5 The IID Case

It is easiest to explain our results by beginning with the special case of Markov transition
densities pk(t|s) = pk(t) which are independent of the second argument s. This implies
that the realizations from these densities, {si,k}, i = 1, 2, . . . are independent and identically
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distributed (IID) sequences. The general Markov case, where transition densities are allowed
to depend on s, is considered in the next section. For the IID case it is easier to specify
the spaces Fd for which the conditional expectation problem as well as the quasi linear
contraction problem are strongly tractable.

For the densities pk independent of s, the assumption on the quality of the quadrature
rules (48) simplifies. We may, of course, assume now that ai,j,k(s) = ai,j,k is also independent
of s, and we have∣∣∣∣∣

∫
Sd

V (t)pk(t) dt −
n∑

i=1

ai,j,kV (ti,j,k)

∣∣∣∣∣ ≤ εj(V ) k = 1, 2, . . . ,m. (61)

As in the previous section we take ||| · ||| = ‖ · ‖Fd
for some normed space Fd. We assume

that Fd is a Hilbert space with reproducing kernel Kd : Sd × Sd → R. A reproducing kernel
Hilbert space is defined as one where the value of a function V at a point t is given by the
inner product of V and the kernel Kd(·, t) evaluated at t. More precisely, the inner product

and norm in Fd are denoted by 〈·, ·〉 and ||| · ||| = ‖ · ‖Fd
= 〈·, ·〉1/2. For V ∈ Fd we have

V (t) = 〈V, Kd(·, t)〉. For the basic theory of such spaces the reader is referred to Aronszajn
(1950) and Wahba (1990) as well as to Section 9.1 of the appendix.

For k = 1, 2, . . . ,m, define

hk(x) =
∫

Sd

Kd(x, t)pk(t) dt, x ∈ Sd. (62)

Assuming that hk ∈ Fd we have from (14) and (47)

Ek(V ) = 〈V, hk〉 , Êk,j(V ) =

〈
V,

j∑
i=1

ai,j,kKd(·, ti,j,k)
〉

.

It is easy to check that

‖Ek‖2 = ‖hk‖2
Fd

=
∫

Sd

hk(x)pk(x) dx =
∫

Sd×Sd

Kd(x, t)pk(x)pk(t) dt dx.

From this we see that (61) holds with

εj(V ) = ‖V ‖Fd
max

k∈[1,m]

∥∥∥∥hk −
j∑

i=1

ai,j,kKd(·, ti,j,k)
∥∥∥∥

Fd

.

We now take ai,j,k = 1/j. We have∥∥∥∥hk −
1

j

j∑
i=1

Kd(·, ti,j,k)
∥∥∥∥2

Fd

= ‖hk‖2 − 2

j

j∑
i=1

hk(ti,j,k) +
1

j2

j∑
i,l=1

Kd(ti,j,k, tl,j,k).
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Consider the sample points ti,j,k which are iid draws from the measure with the density pk.
Integrating over such sample points we get

E

∥∥∥∥hk −
1

j

j∑
i=1

Kd(·, ti,j,k)
∥∥∥∥2

Fd

 =
ρd,k

j
,

where
ρd,k =

∫
Sd

Kd(x, x)pk(x) dx−
∫

S2
d

Kd(x, t)pk(x)pk(t) dx dt. (63)

From the mean value theorem we conclude that there exist sample points ti,j,k such that the

quadrature formula Êk,j of the form (47) satisfies

∣∣∣Ek(V )− Êk,j(V )
∣∣∣ ≤ ‖V ‖Fd

√
ρd,k√
j

. (64)

We stress that the proof of (64) is non-constructive since we use the mean value theorem.
This implies that the algorithm A with Êk,j is also non-constructive.

The estimate (64) proves that (58) holds with p = 2 and

C = sup
k∈[1,m], d=1,2,...

(1 + ρd,k) (65)

as long as C is finite. We thus have

Theorem 4 . Suppose that C given by (65) is finite. Then the conditional expectation
problem is strongly tractable with strong exponent at most 2. Suppose additionally that M
given by (60) is finite. Then the quasi linear contraction problem is strongly tractable with
strong exponent of information at most 2 and strong exponent of arithmetic operations at
most 4. Furthermore, the algorithm A defined by (49) with (non-constructive) Êk,j computes
an ε-approximation at cost

cost(A) = O
(
c(d) m α ε−2 ln2 ε−1 + c(f) α ε−2 ln3 ε−1 + m α2 ε−4 ln4 ε−1

)
with α = CM2, and the big O-factor depending only on β.

For many kernels it is easy to check strong tractability of the conditional expectation problem
independently of the transition densities. Indeed, define

K = sup
d=1,2,...

sup
x∈Sd

Kd(x, x). (66)
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Then since pk is the density of the measure we have

0 ≤ ρd,k ≤ K
∫

Sd

pk(x) dx = K.

Hence, C ≤ 1 + K. We summarize this in

Corollary 1 . For uniformly bounded kernels , K < ∞, the conditional expectation problem
for any Markov transition densities pk is strongly tractable with strong exponent at most 2.

Theorem 4 gives sufficient conditions for strong tractability of the conditional expectation
and quasi linear contraction problems. Still, it is not entirely satisfactory due to the lack of
constructive quadrature formulas. Also, the strong exponent might be less than 2.

The problem of how to construct good quadrature formulas with an optimal exponent
of ε−1 has been addressed in Wasilkowski and Woźniakowski (1999). We briefly summarize
this construction in a simplified case. We assume that the space Fd is the weighted tensor
product of spaces of functions of one variable. That is, the domain Sd is now equal to Dd

with D being a subset of IR. A typical example is D = [0, 1] which leads to the d-dimensional
unit cube Sd = [0, 1]d. The reproducing kernel of Fd is now of the product form

Kd(x, t) =
d∏

k=1

(1 + γd,kK(xk, tk)) , (67)

where K is a reproducing kernel of the space of univariate functions. We assume that
K(·, 0) = 0. This assumption implies that the constant functions belong to Fd.

The weights γd,k are nonnegative and moderate the behavior of functions for all variables.
A small weight γd,k means that the functions depend only slightly on the kth variable. The
sum-exponent pγ of the sequence γ = {γd,k} is defined in Wasilkowski and Woźniakowski
(1999). Roughly speaking it is the largest positive number for which

sup
d

d∑
k=1

γ
pγ

d,k < ∞. (68)

We assume that pγ exists and pγ < 1.
We also need to assume that integration is of the tensor product form, see (7) of

Wasilkowski and Woźniakowski (1999). This means that the transition densities are of the
form

pk(t) =
d∏

j=1

qk(tj) (69)
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for some one dimensional density qk : D → IR from the space L2(D), and k = 1, 2, . . . ,m.
The essence of (69) is that the d-dimensional density pk is generated by the product of the
one dimensional density qk taken for the successive components of the vector t.

The weighted tensor product algorithm, for brevity the WTP algorithm, which is defined
in Wasilkowski and Woźniakowski (1999), can be used to approximate linear tensor product
operators, see the appendix. For the conditional expectation problem, the WTP algorithm
is a quadrature formula of the form (47) which approximates Ek(V )/‖Ek‖.

Observe that we now have

‖Ek‖2 = ‖hk‖2 =
d∏

j=1

(
1 + γd,j

∫
D2

K(x, t)qk(x)qk(t) dt dx
)

.

Observe that supd

∑∞
j=1 γd,kj < ∞ implies that all ‖Ek‖ are of order 1. Hence, the WTP

algorithm can be also used to approximate Ek(V ) as effectively as Ek(V )/‖Ek‖.
The WTP algorithm depends on a number of parameters. We may choose them in such

a way that the WTP algorithm integrates the constant functions exactly. The error formula
of the WTP algorithm has the following property. For any positive δ there exists a positive
Cδ and there is a WTP algorithm which is a quadrature formula of the form (47) for which
the error bound (48) is

εj(V ) = Cδ j−1/p∗ min
c∈IR

‖V − c‖Fd
, with p∗ = max

(
p + δ,

2pγ

1− pγ

)
. (70)

Here, p is the exponent of ε−1 for the one dimensional case, d = 1. We stress that neither
Cδ nor p∗ depend on d. In particular, if

pγ ≤ p

p + 2
(71)

then
p∗ = p + δ.

In this case we can achieve the exponent p∗ which is arbitrarily close to the one dimensional
exponent p. Hence, we obtain the construction of quadrature formulas with the best possible
exponent of ε−1. This with Theorems 3 and 4 yield

Theorem 5 . Consider the spaces Fd with the reproducing kernel (67) and the weights γd,k

satisfying (71). Then the conditional expectation problem is strongly tractable with strong
exponent p which is the exponent of ε−1 for the univariate case.
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Suppose that

C = sup
d,i=1,2,...

minc∈R ‖Vi − c‖Fd

‖V ∗‖Fd

.

is finite. Then the quasi linear contraction problem is strongly tractable. The algorithm A
defined by (49) with the WTP algorithm as Êk,j computes an ε-approximation and its cost
satisfies

cost(A) = O
(
c(d) m α ε−p∗ lnp∗ ε−1 + c(f) α ε−p∗ lnp∗+1 ε−1 + m α2 ε−2p∗ ln2p∗ ε−1

)
, (72)

with α = CMp∗ where p∗ can be arbitrarily close to the strong exponent of the conditional
expectation problem, and the big O-factor depends only on β.

We now present the results on strong tractability for the weighted Sobolev space Fd,γ defined
in the appendix. It is known that the exponent p∗ which appears in Theorem 5 is 1, see
Novak (1998).

We first discuss strong tractability of the conditional expectation problem. Observe that

Kd(x, x) =
d∏

k=1

(1 + γd,kxk) .

The maximum of this function is attained for x = [R,R, . . . , R] and K given by (66) is
K =

∏d
k=1(1 + Rγd,k). This is finite iff supd

∑d
i=1 γd,i < ∞.

Assume then that supd

∑d
i=1 γd,i < ∞. In this case we have pγ ≤ 1. Then the conditional

expectation problem for any Markov densities is strongly tractable and the strong exponent
is at most 2. With the additional assumption (71) that pγ ≤ 1/3 we can apply Theorem 5
and the strong exponent is 1.

We add that it is known that the assumption pγ ≤ 1/3 is not sharp for the Markov
transition density pk ≡ 1. It is proved in Hickernell and Woźniakowski (1999) that we
can achieve the strong exponent of 1 assuming that pγ ≤ 1/2. The proof is, however, not
constructive.

We now turn to strong tractability of the quasi linear contraction problem. This holds
under the additional assumption that supi minc∈R ‖Vi − c‖Fd

/‖V ∗‖Fd
< ∞. We now discuss

when this assumption holds. For simplicity, we consider the case when the transition densities
are the same, pk(t|s) ≡ p(t) for some transition density p. As already mentioned in (20) and
(21) we now have

Γ(V )(s) = π(s) + β
∫

Sd

V (t)p(t) dt
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and the solution is

V ∗(s) = π(s) +
β

1− β

∫
Sd

π(t)p(t) dt, ∀ s ∈ Sd.

Observe that the integrals Ek(V ) in (14) as well as quadrature formulas Êk,j in (47) do not

now depend on k and s. Hence, Êk,j(V ) = Êj(V ), and the iteration (49) takes now the form

Vi(s) = π(s) + β Êji−1
(Vi−1).

The functions Vi as well as the solution V ∗ differ from the function g only by constants. We
also have V0 = 0 and V1 = π, where π is defined by (19). Therefore Vi ∈ Fd for all i iff
π ∈ Fd.

Assume then that π ∈ Fd. Then V ∗ also belongs to Fd and

min
c∈IR

‖Vi − c‖Fd
≡ min

c∈IR
‖V1 − c‖Fd

≤ ‖V ∗‖Fd
.

This proves that Theorem 5 holds with M = 1.
Note that the algorithm A may be even further simplified by the use of the explicit form

of the solution V ∗. That is, we may take

A(s) = π(s) +
β

1− β
Ê(π)

with an appropriate quadrature Ê. Then we do not need to iterate and the bound of
Theorem 5 holds without the logarithms of ln ε−1.

6 General Markov transition densities

In this section we consider Markov transition densities pk(t|s) which may depend on the
second argument s. We relate strong tractability of the conditional expectation and quasi
linear contraction problems to the approximation problem. By the approximation problem
in a space Fd we mean approximation of elements V from Fd by using finitely many function
values of V . That is, V (s) is approximated by the linear algorithm10

V̂j(s) =
j∑

i=1

bi,j(s)V (ti,j) (73)

10It is known that more general algorithms such as nonlinear algorithms using adaptive choice of sample
points are not better than non-adaptive choice of sample points and linear algorithms considered in this
section, see Traub, Wasilkowski and Woźniakowski (1988) and Traub and Traub and Werschulz (1998).
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for some sample points ti,j ∈ Sd and some functions bi,j From the space L2(Sd) with the
norm ‖f‖2

L2(Sd) =
∫
Sd

f 2(t) dt. Let

e(V̂j) =
∥∥∥∥V −

j∑
i=1

bi,j(·)V (ti,j)
∥∥∥∥

L2(Sd)

be the error of the linear algorithm V̂j for V . As for the problems studied in the previous

sections, let napp(ε, d) be the smallest integer n for which there exists V̂n such that

e(V̂n) ≤ ε ‖V ‖Fd
, ∀V ∈ Fd.

We say that the approximation problem is strongly tractable in Fd iff there exist nonnegative
C and p such that

napp(ε, d) ≤ C ε−p, ∀ ε ∈ (0, 1), d = 1, 2, . . . . (74)

The smallest (or infimum of) such p is called the strong exponent of approximation.11

We now relate strong tractability of approximation to strong tractability of the con-
ditional expectation and quasi linear contraction problems. Assume that (74) holds with
C = Capp and p = papp. This means that for every d and j there exist sample points ti,j and

functions bi,j such that the corresponding V̂j satisfies

e(V̂j) ≤ C1/papp
app j−1/papp ‖V ‖Fd

, ∀V ∈ Fd.

Knowing V̂j we define the quadrature formula Êk,j as

Êk,j(V )(s) =
∫

Sd

V̂j(t) pk(t|s) dt =
j∑

i=1

(∫
Sd

bi,j(t) pk(t|s) dt
)

V (ti,j). (75)

Hence, Êk,j is of the form (47) with

ai,j,k(s) =
∫

Sd

bi,j(t) pk(t|s) dt and ti,j,k = ti,j. (76)

11There are a number of papers where strong tractability of approximation in various classes of function
is considered, see e.g., Woźniakowski (1994), and Wasilkowski and Woźniakowski (1999), and a survey can
be found in Traub and Werschulz (1998). In particular, for some cases we know necessary and sufficient
conditions under which strong tractability of approximation holds. This is sometimes achieved by assuming
more general evaluations of V than function values such as arbitrary linear functionals but we do not pursue
this point here.

35



Note that in this case the sample points do not depend on k. The coefficients ai,j,k(s) can be
precomputed for s ∈ Tε,d ∪ {s} with the set Tε,d given by (53) with tp,ji−1,k = tp,ji−1

. Clearly,

Ek(V )(s)− Êk,j(V )(s) =
∫

Sd

(
V (t)− V̂j(t)

)
pk(t|s) dt

and therefore ∣∣∣Ek(V )(s)− Êk,j(V )(s)
∣∣∣ ≤ e(V̂j) ‖pk(·|s)‖L2(Sd).

Let
P = sup

k∈[1,m], s∈Sd

‖pk(·|s)‖L2(Sd). (77)

If P is finite then the upper bound εj(V ) of the quadrature error given by (48) is given by

εj(V ) = C1/papp
app j−1/papp P ‖V ‖Fd

.

Hence, εj(V ) ≤ ε‖V ‖Fd
if

j = Capp P papp ε−papp .

This proves that the conditional expectation problem in Fd is strongly tractable with at most
the same strong exponent as for approximation. This and Theorem 3 yield

Theorem 6 . If P given by (77) is finite then strong tractability of approximation in Fd

implies strong tractability of the conditional expectation problem in Fd with at most the same
strong exponent.

If additionally M given by (60) is finite then the quasi linear contraction problem in Fd is
strongly tractable with at most the same strong exponent of information and with the strong
exponent of arithmetic operations at most twice the strong exponent of approximation.

Furthermore, the algorithm A defined by (49) with Êk,j given by (75) computes an ε-
approximation at cost

cost(A) = O
(
c(d) m α ε−papp lnpapp ε−1 + c(f) α ε−papp lnpapp+1 ε−1 + m α2 ε−2papp ln2papp ε−1

)
with α = Capp(MP )papp and the big O-factor depending only on β.

We illustrate Theorem 6 for the space Fd which was already considered in Section 5. This
is the Hilbert weighted tensor product space of functions defined on Sd = Dd with the
reproducing kernel Kd given by (67). We assume that∫

D2
Kd(x, t) dt dx < ∞.
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Then the operator H(V )(s) =
∫
D Kd(x, s)V (x) dx is compact and nonnegative definite. Con-

sider its eigenpairs (λi, ηi), Hηi = λiηi, with orthonormal ηi and ordered eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ 0.

Let pλ be the sum-exponent of the sequence {λi} of eigenvalues defined by (68). As in Section
5, pγ is the sum-exponent of the sequence {γd,k} of weights. It is proven in Wasilkowski and
Woźniakowski (1999) that the necessary condition on strong tractability of approximation
in Fd is that both pλ and pγ are finite, and then the strong exponent of approximation is at
least 2 max(pλ, pγ).

Assume then that pλ and pγ are finite. In this case, the WTP algorithm is also effective
for approximation, see Wasilkowski and Woźniakowski (1999). Its construction is based on
algorithms for the univariate case, d = 1. Let us assume that for d = 1 we know algorithms
that use n function values with error proportional to n−1/p1 for some positive p1. It is known
that p1 ≥ 2pλ and for some spaces we can achieve p1 = 2pλ. These univariate algorithms
are used as building blocks for the WTP algorithm for arbitrary d. The WTP algorithm is
of the form (73) with the functions bi,j which are the product of functions of one variable.
That is, bi,j(s) =

∏d
k=1 bi,j,k(sk) for some functions bi,j,k from the space L2(D) and sk is the

kth component of the vector s. If we assume that

pγ ≤ p1

2 + 2p1

(78)

then the WTP algorithm computes an ε-approximation at cost Cδε
p1+δ. Here, δ is positive

and can be made arbitrarily small and Cδ is independent of d and may only depend on δ.
This means that approximation is strongly tractable in Fd with strong exponent at most p1.
If p1 = 2pλ then the strong exponent of approximation is exactly equal to 2pλ. This and
Theorem 6 yield

Corollary 2 . Consider the spaces Fd with the reproducing kernel (67) and the weights γd,k

satisfying (78). Then approximation in Fd is strongly tractable with strong exponent at most
p1, where p1 is the exponent of ε−1 for the univariate case.

If P given by (77) is finite then the conditional expectation problem in Fd is strongly
tractable with strong exponent at most p1.

If additionally M given by (60) is finite then the quasi linear contraction problem in Fd

is strongly tractable with strong exponent of information at most p1 and strong exponent of
arithmetic operations at most 2p1.
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Furthermore, the algorithm A defined by (49) with the WTP algorithm to obtain Êk,j by
(75) computes an ε-approximation and its cost satisfies

cost(A) = O
(
c(d) m α ε−p∗ lnp∗ ε−1 + c(f) α ε−p∗ lnp∗+1 ε−1 + m α2 ε−2p∗ ln2p∗ ε−1

)
,

with α = Cδ(MP )p∗ where p∗ = p1 + δ, and the big O-factor depends only on β.

As in the previous section, we now specify the results for the weighted Sobolev space Fd,γ

defined in the appendix. We now have p1 = 1 and (78) means that pγ ≤ 1/4.
Consider the case when the transition densities are the same pk(t|s) = p(t|s). Due to

(19), the quasi linear contraction problem takes now the form

V (s) = π(s) + β
∫
[0,R]d

V (t)p(t|s) dt, π(s) = f(π1(s), . . . , πm(s)). (79)

The WTP algorithm generates the quadrature formulas Êk,j = Êj which are now independent
on k such that

Êj(V )(s) =
j∑

i=1

ai,j(s)V (ti,j) with ai,j(s) =
∫
[0,R]d

bi,j(t)p(t|s) dt.

The condition pγ ≤ 1/4 guarantees that for any δ ∈ (0, 1) and a positive c there exists a
positive C such that we can choose the sample points ti,j and the functions bi,j for which

e(V̂j) ≤ min
(
Cj−1+δ, c

)
‖V ‖Fd,γ

, (80)

see Theorem 5 of Wasilkowski and Woźniakowski (1999) applied to the problem of approxi-
mating functions V from Fd,γ. The need of the constant c will be soon clear.

We want to check when Vi and V ∗ belong to Fd,γ. Assume that p(t|·) belongs to Fd,γ for

all t ∈ [0, R]d, and π ∈ Fd,γ. Then ai,j, Êj(Vi) as well as Vi belong to Fd,γ for all i. The
solution V ∗ also belongs to Fd,γ since p(t|·) ∈ Fd,γ for all t ∈ [0, R]d and

V ∗(s) = π(s) + β
∫
[0,R]d

V ∗(t)p(t|s) dt

implies that all partial derivatives ∂|u|V ∗/∂xu belong to L2([0, R]|u|).
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We now estimate the ratios ‖Vi‖Fd,γ
/ max(‖V ∗‖, ‖V ∗‖Fd,γ

). For any u ∈ {1, 2, . . . , d} by

V u we mean V (0) if u = ∅ and ∂|u|V/∂xu otherwise. Similarly pu denotes ∂|u|p(t|·)/∂xu. We
have

V u
i (s) = πu(s) + β Êu

ji−1
(Vi−1)(s),

(V ∗)u(s) = πu(s) + β
∫
[0,R]d

V ∗(t)pu(t|s) dt.

Recall that E(V )(s) =
∫
[0,R]d V (t)p(t|s) dt is the integral of V with respect to the transition

density p. Observe that the quadrature Êu
j is the usual quadrature applied to the integration

problem Eu(V ). Clearly,

|Eu(V )(s)− Êu
j (V )(s)| ≤ e(V̂j) ‖pu(·|s)‖L2([0,R]d)

and
‖E(V )− Êj(V )‖Fd,γ

≤ e(V̂j) ‖p‖L2([0,R]d)×Fd,γ
,

where

‖p‖L2([0,R]d)×Fd,γ
=

(∫
[0,R]d

‖p(t|·)‖2
Fd,γ

dt

)1/2

.

Since Vi − V ∗ = β(Êji−1
(Vi−1)−E(V ∗)) = β(Êji−1

(Vi−1)−E(Vi−1) + E(Vi−1 − V ∗)) we have

‖Vi − V ∗‖Fd,γ
≤ β

(
e((V̂i−1)ji−1) + ‖Vi−1 − V ∗‖

)
‖p‖L2([0,R]d)×Fd,γ

. (81)

From (80) we have e(V̂j) ≤ c(‖V − V ∗‖Fd,γ
+ ‖V ∗‖Fd,γ

). Since ‖Vi−1 − V ∗‖ is of order ‖V ∗‖,
we have

‖Vi − V ∗‖Fd,γ
≤ β c ‖p‖L2([0,R]d)×Fd,γ

‖Vi−1 − V ∗‖Fd,γ
+ K ‖p‖L2([0,R]d)×Fd,γ

‖V ∗‖

for some K dependent only on β.
Choose c such that βc‖p‖L2([0,R]d)×Fd,γ

≤ 1/2, say. Observe that as long as ‖p‖L2([0,R]d)×Fd,γ

is uniformly bounded in d then c is uniformly bounded from below and the presence of c in
(80) is not really essential. From this we have

‖Vi − V ∗‖Fd,γ
= O

(
max(‖V ∗‖Fd,γ

, ‖p‖L2([0,R]d)×Fd,γ
‖V ∗‖)

)
.

This proves that ‖Vi‖Fd,γ
/ max(‖V ∗‖, ‖V ∗‖Fd,γ

) is of order 1 as long as ‖p‖L2([0,R]d)×Fd,γ
is

uniformly bounded in d.
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We summarize the results of this section. For the weighted Sobolev space Fd consider
the set of transition densities

PL =

{
p : sup

s∈[0,R]d
‖p(·|s)‖L2([0,R]d) ≤ L and ‖p‖L2([0,R]d)×Fd,γ

≤ L

}

with a constant L ≥ 1, as well as the set of functions

U = { (π1, π2, . . . , πm) : f (π1(·), π2(·), . . . , πm(·)) ∈ Fd,γ } .

Then Theorem 5 and the results of this section yield

Theorem 7 . If pγ ≤ 1/4 then the conditional expectation and quasi linear contraction
problems with data from P and U are strongly tractable with strong exponent 1. For any
positive δ, the algorithm A defined by (49) with an appropriately chosen WTP algorithm
computes an ε-approximation with

cost(A) = O
(
c(d) m L2(1+δ) ε−1−δ ln1+δ ε−1 + c(f) m L2(1+δ) ε−1−δ ln2+δ ε−1

+ m L4(1+δ) ε−2(1+δ) ln2(1+δ) ε−1
)

with the big O-factor depending only on β, δ and R.

7 Example: The Rational Expectations Pricing Model

In this section we provide an example of how special structure can arise in an economic
problem. We show how this structure enables us to design an algorithm that nearly attains
the optimal univariate rate of convergence of n−1, in multivariate problems where the di-
mension d may be arbitrarily large. We consider a special case of the rational expectations
asset pricing model, where V ∗(s) denotes the expected discounted value of an asset given
information s and is the unique solution to the Fredholm integral equation given by

V (s) = π(s) + β
∫
[0,R]d

V (t)p(t|s) dt, s ∈ [0, R]d, (82)

where

p(t|s) =
d∏

i=1

exp (−(ti − αd,i − bdsi)
2/(2λd,i))∫ R

0 exp (−(t− αd,i − bdsi)2/(2λd,i)) dt
, (83)
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with αd = Qdad + (1 − bd)/2~R, where Qd is a d × d orthogonal matrix, λd,i > 0, ad is an

element of Rd, bd ∈ (0, 1) for all d, and ~R = [R, . . . , R]. The interpretation of this problem
is that π(s) represents the payoff of the asset in state s, and p(t|s) is the Markov transition
probability governing the evolution of information. The transition density (83) is a truncated
normal approximation to the vector AR(1) process given by:

ln(sj+1) = ad + bd ln(sj) + εj (84)

where {εj} is an IID Gaussian process with marginal distribution N(0, Ωd) where Ωd is a
positive definite covariance matrix. We can write Ωd = Q′

dDdQd, where Qd is an orthogonal
matrix and Dd = diag(λd,1, . . . , λd,d) is a diagonal matrix containing the eigenvalues of Ωd.
Formula (83) results from truncating the normal process to the cube [0, R]d.

We consider the Fredholm integral problem (82) for the weighted Sobolev space Fd = Fd,γ

which is defined in the appendix. We take the vector γ of the weights given by γd,i = i−4.

Theorem 8 . Assume that π belongs to Fd,γ,

b := sup
d

bd < 1 and a := sup
d

(
d∑

i=1

a2
d,i

)1/2

< ∞

and

λ := sup
d

d∑
i=1

i4λ−2
d,i < ∞.

Then there exists R0 depending only on a and b such that the rational expectations pricing
model (82) with R ≥ R0 is strongly tractable. More precisely, for any positive δ there exists
a positive C depending only on δ, a, b, λ and R such that the algorithm A computes an ε-
approximation with

cost(A) ≤ C
(
c(d) ε−(1+δ) ln1+δ ε−1 + ε−(2+δ) ln2(1+δ) ε−1

)
.

Hence, the strong exponent of the rational expectations pricing model is at most 1, and the
strong exponent of arithmetic operations is at most 2.

The proof of Theorem 8 is presented in the appendix. Notice that if condition (8) holds the
parameters {λd,i} tend to ∞ as i → d and d →∞. Formula (83) implies that for i close to
d, the corresponding marginal densities of p(t|s) are close to a uniform density over [0, R]
independent of the value si. This implies that even though π(s) depends on potentially all
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of the state variables s, if it belongs to the weighted Sobolev space Fd,γ then the conditional
expectation Eπ and the asset value V ∗ will only effectively depend on only a relatively small
number of the si variables. The economic interpretation of the special structure embodied by
this example is that in problems where there sufficient uncertainty about the future values
of many of the state variables affecting asset payoffs, asset prices will effectively depend only
on a finite number of state variables for which there is a sufficiently strong link between
current realized values and future expectations. The implied restrictions on the dependence
of V ∗ on s makes the calculation of asset prices strongly tractable, and the number of sample
points n necessary to compute an ε-approximation to V ∗(s) is independent of d.

Observe that we did not assume that the norm in the space Fd,γ of the function π is
uniformly bounded in d. However, the norm of π directly affects the norm of the solution
V ∗ which, in turn, affects the definition of an ε-approximation.

8 Conclusion

In this paper we have identified a general type of “special structure” and have introduced
an algorithm that enables us to exploit this special structure and break the curse of dimen-
sionality associated with approximating the fixed point V = Γ(V ) for a class of quasilinear
contraction mappings Γ that arise frequently in economic applications. We showed that
there is a deterministic, successive approximations algorithm which converges at a faster
rate than the random successive approximations and random multigrid algorithms that were
used by Rust (1997) to break the curse of dimensionality for these problems in the random-
ized setting. In addition to showing that a deterministic algorithm can break the curse of
dimensionality, we have established the surprising result that even though the function V
can depend on an arbitrarily large number of continuous-valued arguments (s1, . . . , sd), our
algorithm can approximate V to within an error of ε using only roughly O(ε−1) function
evaluations and O(ε−2) arithmetic operations, independent of d. In the terminology of com-
puter science, we have shown that the quasilinear contraction problem is strongly tractable
with strong exponent equal to 1: using n function evaluations and O(n2) arithmetic oper-
ations, our algorithm produces an approximation to the true fixed point V with an error
bounded by Cn−p, where p is close to one and C is an absolute constant that does not
depend on d. Thus, we have identified a class of multivariate problems with arbitrarily large
d for which our algorithm attains nearly the same rate of convergence that can be attained
for the uni-dimensional problems, d = 1. However, for multi-dimensional problems with
d continuous variables, the method of successive approximations using multi-dimensional
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interpolation and standard product-rule quadratures to perform the numerical integrations
requires O(nd) points and O(n2d) arithmetic operations to attain an error of order O(1/n).
For these methods the curse of dimensionality is present. We use an alternative linear ap-
proximation algorithm known as the weighted tensor product algorithm to achieve an error
roughly of C/n using only n points (function evaluations).

The other contribution of this paper is to identify an economically meaningful type of
“special structure” for the profit, utility, or value functions entering the fixed point problem
for which it is possible to nearly achieve this optimal uni-dimensional rate of convergence.
The special structure can be described intuitively: it occurs when the dependence of a
function on the ith variables decreases with increasing i. This dependence is controlled by a
sequence of positive weights γi. We have provided a criterion on γi that enables us to break
the curse of dimensionality. A sufficient condition for strong tractability is that the weights
satisfy

∑∞
i=1 γi < ∞. The boundedness of this sum implies that the weights γi go to zero.

When γi is small, the norm of the function is very sensitive to changes in the ith variable.
Thus, if our functions are to have bounded weighted norm, they must essentially be “flat”
with respect to variables with large i. If we require that the γi weights approach zero at
a sufficiently rapid rate, so that the sum of the weights satisfies

∑∞
i=1 γ

1/4
i < ∞, then the

strong exponent of our algorithm is p = 1, i.e., it comes arbitrarily close to attaining the
optimal uni-dimensional rate of convergence rate of Cn−p with p = 1.

We note two important caveats about our results. First, although our algorithm is
constructive, we do not yet feel that it is “practical” for use in real problems. The weighted
tensor product algorithm is difficult to implement which may imply that its advantages
over simpler algorithms such as Rust’s (1997) random multigrid method will only become
obvious for large d. A related problem is that our analysis also assumes that the quadrature
weights that are used to approximate the conditional expectations of the value functions
are “precomputed” (see formula (76) in Section 6). However, computing these weights
themselves involve computing multivariate integrals. Our analysis has assumed that these
integrals are computed exactly, but in practice they would have to be computed numerically
and this would be a substantial additional computational burden.

Second, although the Bellman equation of dynamic programming is a special type of
quasi-linear contraction mapping, we do not yet know whether our result applies to this case.
The reason is that our result requires sufficient smoothness of both the profit/utility functions
{πk} and the sequence of value functions {Vj} generated by our successive approximations
algorithm. The assumption in Theorem 7 that f(π1(·), . . . , πm(·)) ∈ Fd,γ does not generally
hold when the quasi linear function f is non-differentiable as in the Bellman case where f is
the max function. Further, the {Vj} sequence must have bounded weighted norm for strong
tractability to hold and the strong exponent to be equal to 1. However, in the Bellman case,
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the max operator may introduce enough kinks in the {Vj} functions so that the weighted
norm of this sequence may not be uniformly bounded. One way to get around the problem
is by “adding some noise” to smooth out the kinks: thus, the “smoothed Bellman operators”
Γσ with smoothing parameters σ > 0 do have sufficient smoothness for our results to apply
provided σ is sufficiently large. However, as σ → 0, the norm of the corresponding smoothed
quasi-linear function fσ(π1(·), . . . , πm(·)) tends to infinity, and for this reason we cannot use
the results for the strong tractability of the smoothed Bellman problem to argue that the
original unsmoothed Bellman problem is also strongly tractable.

We are optimistic that it will be possible to extend our results to the important case of
Bellman operators, but we leave this as an open conjecture and a topic for future research.
One possible direction is to consider policy iteration algorithms for solving the Bellman
equation and to note that each policy valuation step involves a solution to a contractive
Fredholm integral equation, and our results have shown that under appropriate conditions,
the contractive Fredholm problem is strongly tractable with strong exponent equal to 1. We
conclude by noting that our theoretical results have already stimulated new investigations
that attempt to use linear algorithms similar to the WTP algorithm to break the curse of
dimensionality of dynamic programming problems. Computational experiments such as in
Beńıtez-Silva et. al. (2000) suggests that the strategy of using linear algorithms in con-
junction with policy iteration could be highly effective for solving high dimensional dynamic
programming problems.

9 Appendix

9.1 Weighted Sobolev space Fd,γ.

The space Fd,γ is a Hilbert space of functions defined on the d-dimensional cube Sd = [0, R]d,
see Sloan and Woźniakowski (1998) where the case R = 1 is considered. This is a Hilbert
space with a reproducing kernel. For the basic theory of such spaces the reader is referred to
e.g., Aronszajn (1950) and Wahba (1990). The most important property of a reproducing
kernel Hilbert space is that there exists a function Kd : Sd ×Sd → R such that Kd(·, x) ∈ H
for any x ∈ Sd and

f(x) = 〈f, Kd(·, x)〉 ∀ f ∈ H,

where 〈·, ·, 〉 is the inner product of H.
The function Kd is called a reproducing kernel of the Hilbert space H. Sometimes we

write H = H(Kd) to indicate the reproducing kernel of H. The reproducing kernel has the
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following properties. For any x and t from Sd, we have

‖Kd(·, x)‖ = K
1/2
d (x, x) and Kd(t, x) ≤ K

1/2
d (t, t)K

1/2
d (x, x).

For any integer n and points ti ∈ Sd for i = 1, . . . , n, the n × n matrix (Kd(ti, tj)) is non-
negative definite. In fact, for any function Kd with the last property there exists a Hilbert
space for which Kd is its reproducing kernel. Therefore, it is enough to present a reproducing
kernel in order to define the Hilbert space with this kernel.

That is the approach we take for introducing the weighted Sobolev space Fd,γ. Its repro-
ducing kernel Kd,γ is

Kd(x, t) =
d∏

i=1

(1 + γd,i min(xi, ti)) .

Here, γd,i ≥ 0. For γd,i ≡ 1, we obtain the reproducing kernel of the classical (unweighted)
Sobolev space Fd,1 = W 1,1,...,1([0, R]d).

For d = 1, the space F1,γ consists of absolutely continuous functions whose first derivatives
are in L2([0, 1]) with the inner product of V, W ∈ F1,γ given by12

〈V, W 〉 = V (0)W (0) + γ−1
1,1

∫ 1

0
V ′(x)W ′(x) dx.

For d ≥ 2, the space Fd,γ is the tensor product of F1,γd,1
⊗F1,γd,2

⊗· · ·⊗F1,γd,d
and corresponds

to functions which are once differentiable with respect to each variable.
We denote the inner product and norm in Fd,γ by 〈·, ·〉Fd,γ

and ‖ · ‖Fd,γ
= 〈·, ·〉1/2. The

inner product of Fd,γ is

〈V, W 〉 =
∑

u⊂{1,2,...,d}
γ−1

d,u

∫
[0,R]|u|

∂|u|

∂xu

V (xu, 0)
∂|u|

∂xu

W (xu, 0) dxu. (85)

12For the inner product

〈V,W 〉 =
∫ 1

0

V (x)W (x) dx + γ−1

∫ 1

0

V ′(x)W ′(x) dx.

we obtain the Sobolev space with the reproducing kernel

K1(x, t) =
√

γ

sinh
√

γ
cosh (

√
γ (1−max(x, t))) cosh (

√
γ min(x, t)) , ∀x, t ∈ [0, 1].

as shown by Thomas-Agnan (1996).
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Here, |u| is the cardinality of u. For the vector x ∈ [0, R]d, we denote xu as the vector From
[0, R]|u| containing the components of x whose indices are in u, and dxu =

∏
j∈u dxj. By

(xu, 0) we mean the vector x from [0, R]d, with all components whose indices are not in u
replaced by 0.

For u = ∅ we have γd,∅ = 1, and for u 6= ∅ we have γd,u =
∏

j∈u γd,j. If the weight γd,j is
zero then all γd,u = 0 with j ∈ u. In this case, we assume that the functions do not depend
on the jth variable, and we have 0/0 = 0 in the inner product formula. Observe that the
sum in the inner product has 2d terms.

The norms ‖V ‖Fd,γ
and ‖V ‖ = maxx∈[0,R]d |V (x)| may be quite different. Indeed, take

R = 1 and the function V (x) = (1− x1) . . . (1− xd). Then ‖V ‖ = 1 and for positive γd,j we
have

‖V ‖Fd,γ
=
∑
u

γ−1
u =

d∏
j=1

(1 + γ−1
d,j ).

Hence, for γd,j ≡ 1 we have ‖V ‖Fd,γ
= 2d.

We now consider the Cobb-Douglas function,

π(x) =
d∏

k=1

(xk + ak)
αk , xk ∈ [0, R],

where x = [x1, x2, . . . , xd] with nonnegative ak and αk such that
∑d

k=1 αk = 1.
The weighted norm of π was estimated in Wasilkowski and Woźniakowski (1999) for

γd,k = αk. Then π ∈ Fd,γ iff a := minj aj > 0. If so then

‖π‖Fd,γ
≤ b2 +

b2R

a2
exp

(
R/a2

)
, ∀ d, (86)

where b = maxj aj. In particular, for aj ≡ 1 we have ‖π‖Fd,γ
≤ 1 + R exp(R).

9.2 Weighted Tensor Product Algorithm

The WTP algorithm is defined as a linear algorithm to approximate linear multivariate
weighted tensor product problems, see Wasilkowski and Woźniakowski (1999). The essence
of this algorithm is that it requires only the knowledge of linear algorithms for the solution
of the corresponding univariate problem. This is usually relatively easy to achieve. For the
multivariate case, the WTP algorithm takes a special tensor product of the known univariate
algorithms in such a way that the total number of information and arithmetic operations
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is strictly controlled. This number depends on the weights of the tensor product problem.
For the weights which go sufficiently fast to zero, the total number of information and
arithmetic operations needed to guarantee that the error of the WTP algorithm is at most
ε is independent of the dimension d and, roughly speaking, is the same as for d = 1.

We briefly describe the WTP algorithm for multivariate integration

I(f) =
∫

Sd

f(x) dx.

Let {In,γ} be a sequence of algorithms of the form (27) for approximation of the integral
I(f) in the univariate case d = 1. That is,

In,γ(f) =
n∑

i=1

wn,i,γf(sn,i,γ) (87)

where the quadrature weights {wn,i,γ} and sample points {sn,i,γ} may depend on the weight
γ defining the weighted norm for F1,γ. Observe that the cost of In,γ is c(d)n. We assume that
the quadrature weights and sample points are chosen so that the errors, en(Fd,γ) converge to
0 as n →∞. For each weight γ, we assume that there is an increasing sequence of integers

m0,γ = 0 < m1,γ = 1 < m2,γ < · · · < mi,γ, (88)

and define
∆i,γ(f) = Imi,γ ,γ(f)− Imi−1,γ ,γ(f) for i ≥ 1. (89)

Observe that
∑j

i=1 ∆i,γ = Imj,γ ,γ and Imj,γ ,γ(f) converges to I(f) for every f ∈ Fd,γ. Let INd
+

be the set of vectors ~i = [i1, . . . , id] with positive integer coefficients ik. To stress their role,
we shall refer to them as multi-indices. By |~i | we mean

∑d
k=1 ik. Let {Pn,d} be a sequence

of subsets of INd
+ such that Pn,d consists of n multi-indices, Pn,d ⊂ Pn+1,d and

⋃
n Pn,d = INd

+.
Each set Pn,d may depend on all weights γi for i = 1, 2, . . . , d.

The weighted tensor product (WTP) algorithm is defined as the sequence {Un,d,γ} given
by

Un,d,γ(f) =
∑

~i∈Pn,d

(
d⊗

k=1

∆ik,γk

)
(f), (90)

where the tensor product f = f1 ⊗ · · · ⊗ fd =
⊗d

k=1 fk in the case of scalars fk is just the
product

∏d
k=1 fk. In the case where the fk are scalar functions, f =

⊗d
k=1 fk is a function of d

variables given by f(t1, . . . , td) =
∏d

k=1 fk(tk). In the case of linear operators Tk, T =
⊗d

k=1 Tk
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is a linear operator such that T
(⊗d

k=1 fk

)
=
⊗d

k=1 Tk(fk). The WTP algorithm depends on

a number of parameters. First of all, it depends on the sequence of weights {γd,k}, the
sequence of cardinalities mi,γk

, as well as the sequence of sets Pn,d. It also depends on the
one-dimensional quadrature algorithms In,γd,k

. By varying these parameters we obtain the
class of WTP algorithms.

Since limj→∞
∑j

i=1 ∆mi,γ
(f) = I(f) for every f ∈ Fd,γ, we have

I(f) =
∑

~i∈INd
+

(
d⊗

k=1

∆ik,γd,k

)
(f), ∀ f ∈ Fd,γ (91)

This yields

|I(f)− Un,d,γ(f)| =
∥∥∥∥ ∑

~i∈INd
+\Pn,d

d⊗
k=1

∆ik,γd,k
(f)

∥∥∥∥ ≤ ∑
~i∈INd

+\Pn,d

∥∥∥∥ d⊗
k=1

∆ik,γd,k
(f)

∥∥∥∥.
Therefore the error of Un,d,γ is bounded by

e(Un,d,γ, I) ≤
∑

~i∈INd
+\Pn,d

∥∥∥∥∥
d⊗

k=1

∆ik,γd,k

∥∥∥∥∥ =
∑

~i∈INd
+\Pn,d

d∏
k=1

∥∥∥∆ik,γd,k

∥∥∥ . (92)

This formula suggests that a good choice for Pn,d is the set of n multi-indices ~i which
correspond to the n largest norms of

⊗d
k=1 ∆ik,γk

. We refer the reader to Wasilkowski and
Woźniakowski (1999) for further discussion of the WTP and its rate of convergence.

9.3 Proof of Theorem 8

We prove Theorem 8 by applying Theorem 7. First of all, note that for γd,i = i−4 we have
pγ = 1/4 as needed in Theorem 7. We now check the other two assumptions of Theorem 7
that

‖p(·|s)‖L2([0,R]d) and ‖p‖L2([0,R]d)×Fd,γ

are uniformly bounded in d and s.
To prove that ‖p(·|s)‖L2([0,R]d) is uniformly bounded in d and s, observe that due to (83)

and the conditions on λd,i, it is enough to show that for λ ≥ 1 and c = αd,i + bdsi we have

∫ R

0
exp

(
−(u− c)2/λ

)
du ≤

(∫ R

0
exp

(
−(u− c)2/(2λ)

)
du

)2

.
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This holds if we show that ∫ R

0
exp

(
−(u− c)2/(2λ)

)
du ≥ 1.

We have

−a +
1− b

2
R ≤ c ≤ a +

R

2
+ bd

(
si −

R

2

)
≤ a +

1 + b

2
R.

Therefore −c ≤ a− (1− b)R/2 and R− c ≥ −a + (1− b)R/2 and

∫ R

0
exp

(
−(u− c)2/(2λ)

)
du =

∫ R−c

−c
exp

(
−x2/(2λ)

)
dx ≥

∫ −a+(1−b)R/2

a−(1−b)R/2
exp

(
−x2/2

)
dx.

Since the last integral is about
√

2π > 1 for large R, there exists R0 depending only on a
and b such that the last integral is indeed at least 1, as claimed.

We now estimate ‖p‖L2([0,R]d)×Fd,γ
, Due to the product form of p in (83) we first consider

the function

h(ti|si) =
exp (−(ti − αd,i − bdsi)

2/(2λd,i))∫ R
0 exp (−(t− αd,i − bdsi)2/(2λd,i)) dt

.

It is easy to check that

∫ R

0

∫ R

0

(
∂h

∂s
(t|s)

)2

dt ds = O

(
b2
d

λ2
d,i

)

with the factor in the big O-notation depending on the global parameters a, b and R. This
yields that

‖p‖2
L2([0,R]d)×Fd,γ

= ‖p(·|0)‖2
L2([0,R]d) +

∑
∅6=u⊂{1,...,d}

O

∏
j∈u

b2
d

γd,iλd,i


= O

 d∏
j=1

(
1 +

i4bC

λd,i

)
for some C. This is uniformly bounded in d due to the condition on λd,i which completes
the proof.
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[16] F. J. Hickernell and H. Woźniakowski, Integration and approximation in arbitrary di-
mensions, submitted for publication, 1998.

[17] R. Howard, Dynamic Programming and Markov Processes New York, Wiley, 1960.

[18] Z. Huang, L. Khachiyan and K. Sikorski, Approximating fixed points of weakly con-
tractive mappings, to appear in J. Complexity, 1999.

[19] K. Judd Numerical Methods in Economics MIT Press, Cambridge, 1998.

[20] F. Kydland and E. Prescott “Time to Build and Aggregate Fluctations” Econometrica
50 1345–1370, 1982.

[21] R.E. Lucas, Jr., Asset prices in an exchange economy, Econometrica, 46-6, 1429–1446,
1978.

[22] D. McFadden, Econometric Models of Probabilistic Choice, in C.F. Manski and D.
McFadden (eds.), Structural Analysis of Discrete Data. MIT Press, Cambridge, Mas-
sachusetts, 1981.

[23] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods , SIAM
CBMS-NSF Monograph 63, Philadelphia, PA, 1992.

[24] E. Novak, Deterministic and stochastic error bounds in numerical analysis, Lecture
Notes in Mathematics, Springer Verlag, Berlin, 1349, 1988.
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[50] H. Woźniakowski, Tractability and strong tractability of linear multivariate problems,
J. Complexity, 10, 96-128, 1994.
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