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ABSTRACT 

 
I will talk briefly about some of the changes I’ve witnessed over 
almost half a century of computing.  Then I’ll discuss the unifying 
idea of scaling laws, with examples ranging from Moore's law to 
computational complexity.  What are some of the implications of 
scaling laws for the future of computing? 

 
 
 

  I can remember vividly the moment I was hooked on computers. I can’t tell you 

the date, which was probably in 1957, but I remember the moment.  Let me give you the 

context. 

 I entered Columbia in 1954 intending to take a Ph.D. in physics.  In 1955 I 

learned that IBM had a research lab at Columbia and I started taking courses in 

computing and applied mathematics. In 1957 I started working on my thesis which was 

the following: Experimentalists could make accurate measures of quantities such as the 

Lamb shift as well as relativistic corrections and the theoreticians wanted to test their 

theories to see if they agreed with experiments.  This required solving the Schroedinger 

equations to obtain the wave function and using that to calculate the quantities of interest. 

 I wanted to do this for the ground and excited states of helium.  As you know, helium 

has two electrons, two protons, and two neutrons. It is the simplest element after 
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hydrogen and yet the helium calculations were at the cutting edge of computing in the 

mid-to-late 50’s. 

What machines were available at IBM’s research laboratory? The first machine 

that I used in 1955 was a plugboard machine. That is, you programmed the machine by 

placing wires into a plugboard.  By the time I started my thesis the IBM 650 was 

available. This was a machine with a main memory consisting of a drum with 2000 

words. That was a bit of a challenge. Of those 2000 words, 500 were used to turn the 650 

into a 3 address machine and 500 for mathematical routines like the sine function. That 

left 500 words for my program and about 500 words for my data; I had to store three 

matrices, each of order 18. The secondary memory consisted of punch cards.  Doing this 

“super-computer” calculation on a 2000 word drum memory machine was, in part, what 

made it a Ph.D. thesis. 

 Just a couple of more things before I tell you about the moment I got hooked on 

computing.  The way that the wave function was calculated was to assume it had a certain 

form with adjustable parameters.  The parameters were adjusted via a variational 

principle.  One assumed values of parameters in the wave function, computed the 

corresponding energy level and adjusted the parameters to make the energy smaller. 

 I worked on parts of the program for some 6 months, planning, coding, running 

and debugging various modules. Now I was ready for my first complete run. My output 

from the 650 was punched into cards which I carried over to the printer which started to 

print the energies which were decreasing as the wave functione improved. The first 

number that I saw was the calculated ground state energy of helium which agreed with 

experiment to 4 decimal places. A chill ran down my spine. I was doubly amazed. I was 
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amazed you could model nature with an equation, solve the equation and obtain results 

that agreed with physical experiments, and I was amazed that I could program for six 

months, do extensive calculations, and out would come the experimentally measured 

energy, good to four places.  Then I watched the printout as the energy dropped, dropped, 

dropped, dropped which meant I was converging.  That was the moment I was hooked. 

 After finishing my degree, I went to Bell Labs.  That was a golden time at the 

Labs. If you were hired by the Research Division, you could work on anything you chose. 

 The only criterion was that your work should have impact.  One day in late 1959, one of 

my colleagues came into my office and asked how to calculate the solution of a certain 

problem.  I could see a variety of ways to solve the problem.  What was the best, that is, 

the optimal method?  The problem was continuous and had to be solved numerically.  

That meant that you could only solve it approximately, to within an error ε . By optimal I 

mean the method which used the minimal computational resources, for example time, to 

compute an ε -approximation. To my surprise, there was no existing theory.  I got 

fascinated by this question and in 1964 published a monograph on optimal iteration 

theory.  It wasn’t until 1968 that I heard Al Borodin give a talk on what he called the sexy 

phrase “computational complexity” and realized that’s what I was working on.  

Hartmanis and Stearns had coined the phrase in 1965.  It was independently introduced 

by the Soviet polymath, Kolmogorov.   

 For over 40 years my colleagues and I have worked on the computational 

complexity of continuous problems, such as high-dimensional integration, continuous 

optimization, partial and integral equations, and approximation.  This field is today called 

information-based complexity, a name suggested in the 80’s by Richard Karp. 
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 Back to the 60’s for a moment. People would ask me what do you do and  if I 

mentioned computers they didn’t know what to make of it.  They thought it had 

something to do with numbers and they might mention that their uncle was a certified 

public accountant. It seems hard to believe today, but well into the 70’s there was rarely a 

mention of computers in the popular media. If, say, the New York Times, or Newsweek,  

mentioned computers, that was an occasion. This changed especially after personal 

computers became widespread in the early 80’s and became transformed with the world 

wide web in the 90’s. 

 The first computer science departments were created in the mid 60’s.  In 1971 I 

was asked to head the Computer Science Department at Carnegie-Mellon University.  For 

those of you familiar with the School of Computing at Carnegie-Mellon today, the size of 

the department in 1971 might surprise you. There were about 8 of us.  Of course they 

were an extraordinary group including Herb Simon, who passed away very  recently. 

Herb was one of the founding fathers of artificial intelligence and was to be named a 

Nobel laureate in economics. Then in 1979 I was asked to start the department at 

Columbia. 

 I was lucky to have started in computation in the mid 50’s and to have had the 

opportunity to build theories, departments and journals.  I like to say that in my scientific 

work I can just walk along and pick up diamonds; I never have to strip mine.  I am a 

theoretical computational scientist and I’ll discuss why this is specifically true in my 

field.  But it has been true and it is true today all over computer science, 

telecommunications and electrical engineering.  The general reason is the incredible rate 

of change. 
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 I’ll zoom in on my own field of computational complexity.   Every time there is a 

major change in architecture, the rules of the game change. The rules are what we call the 

model of computation. It is as if you were a chess player and every decade or so there is a 

radical change in, say, the type of pieces, their legal moves, the type and shape of the 

board and perhaps even the dimension of the board changing from 2 to d .  Every time 

the rules change you’ve got to master what is essentially a new game.  In the first few 

decades, computers were sequential. Then we got parallel computers, asynchronous 

computers, and heterogeneous workstation farms. More recently, DNA computation, 

nanotube chips, and quantum computation are being considered . I will return to quantum 

computation later. Furthermore, the computational resources of interest vary;  they 

include time, memory, area on the chip, and communication costs.  So there are always 

new challenges for the theoretician and I don’t see that ending. 

 I turn now to scaling laws as a unifying principle, both temporally (past, present 

and future) and across the various areas of computing and telecommunications. 

 As an example of a scaling law consider Moore’s law which states that the 

number of transistors on a chip doubles every 18 to 24 months.  This implies a doubling 

of computer power or a halving of cost over the same time.  Moore’s law has held for 

some 40 years.  If we take the more conservative number of doubling every two years, we 

have had 20 doublings in 40 years.  Thus means based on chip density, computers 

are 202 or about  
610  times more powerful than around 1960.  

 Moore’s law is an example of an exponential scaling law.  An exponential scaling 

law is of the form 
xa  where a  is a constant and x  is a variable. For 
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Moore’s law a is the square root of 2 and x  is the number of years it can be applied. 

There are quantities that are doubling much faster than every 18 months. For example, 

George Gilder claims that bandwidth is doubling every 6 months. He points out that the 

doubling is still in its early stages; it may take some years before we really  know the 

doubling rate. This bandwidth doubling rate is sometimes called Gilder’s law. It is also 

exponential, but of the  form 
xa with a now equal to 4. It is a much steeper exponential 

than Moore’s law. It’s important to understand what effect the much faster increase in 

communication power than in computational power will have on networks and how we 

do our computing.   

 I will turn next to scaling laws in computational complexity.  A central question 

here is how must the difficulty of a problem scale with its size.  I want to contrast 

polynomial scaling with exponential scaling. If a problem scales polynomially with size 

and the degree of the polynomial is say 2 or 3, then we can solve the very large problems 

that occur in practice.  But if a problem scales exponentially, then it’s impossible to solve 

large problems and such problems are said to be computationally intractable. 

 Are combinatorial problems, such as the travelling salesman problem, 

polynomially or exponentially hard?   We don’t know. Technically the question is 

whether P = NP and it is perhaps the most important open question in theoretical 

computer science. What we know, due to work initiated by Steven Cook and Richard 

Karp in 1971 and 1972, is that there are hundreds of combinatorial problems that scale 

either polynomially or exponentially.   That is they are all easy or all intractable, but we 

don’t know which. The belief of the experts is that they scale exponentially. 
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 But we have to solve large combinatorial problems.  Since these are complexity 

results, intractability cannot be broken by inventing a clever new algorithm.  Two of the 

ways intractability may be broken are the following:  

• Settle for an approximate solution; this sometimes breaks intractability of 

combinatorial problems.   

• Replace the worst case assurance by a stochastic one.  For example,  analyze the 

average complexity or use randomization. 

 One area where exponential scaling has been proven, not just conjectured is for 

continuous problems, which we study in information-based complexity. For these 

problems the size is the number of variables, that is, the dimension. In the 50’s Richard 

Bellman noticed that the difficulty of certain problems grew rapidly more difficult with 

their dimension and called this the “curse of dimensionality”. That was before we started 

to study complexity, so it was just an observation. Now we know that if you want a worst 

case assurance of error at most ε , then the complexity of most continuous problems is 

exponential in dimension. The base of the exponential is the reciprocal of ε .  For 

example, if you want 4 place accuracy, the base is 
410 and if there are d variables then the 

complexity scales as 
d410 . 

 We want to solve problems with very large d.   Path integrals where d is infinity 

occur in physics, chemistry and finance.  Very high dimensional integrals with d = 360 

must be calculated in mathematical finance.   Can we  break exponential scaling , that is, 

can we vanquish the “curse of dimensionality”? 

 Sometimes we can vanquish the curse and I would like to tell you how this is 

done for certain problems in finance on which my research colleagues and I have been 



 8 

working.  The problem is to value financial derivatives. A financial derivative is an 

instrument whose value is derived from the value of an underlying asset. Alan Greenspan 

estimates that the notional value of all financial derivatives is some 90 trillion dollars.  

That is about 10 times our gross national product.  So there is some interest in how to 

value derivatives. 

 An example of a financial derivative is a CMO, that is, a collateralized mortgage 

application.  Think of it as a basket of 30 year mortgages. If I want to estimate future cash 

flows, I have to compute integrals in 360 dimensions -- 360 being the number of months 

in 30 years. If I want to be assured of an error at most ε , the complexity of this problem 

grows as ( )360/1 ε . If we want a two place answer, the complexity  is of order 
72010 . 

 Of course, we cannot use that much time, so for several decades the financial 

community has been using Monte Carlo methods.  Then this problem can be solved at 

cost which is the reciprocal of ε  squared.  The curse of dimensionality has been 

vanquished but it is now only the expected error that is less than ε .  There is no such 

thing as a free lunch.  Here, one has achieved less complexity for more uncertainty. So 

using Monte Carlo, the problem scales as 
2/1 ε , where ε  is the expected error.  

 Can we do better?  In the early 90’s I asked a student, Spassimir Paskov, to 

compare quasi-Monte Carlo with Monte Carlo for a hard CMO provided by Goldman 

Sachs. By hard, I mean that about a million floating point operations are needed to 

sample the integrand at one point.  So it’s important to minimize the number of samples. 

A quasi-Monte Carlo method uses deterministic sampling with a rather small number of 

sample points spread as uniformly as possible. There is a very well developed theory of 

quasi-Monte Carlo methods which predicts that the complexity should scale as 
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.  That’s better than Monte Carlo as ε  goes to zero with d fixed. But in 

finance ε  is rather large, say one part in a hundred, and d  is huge. Then this scales very 

badly . It scales so badly with d  that in the early 90’s experts believed that quasi-Monte 

Carlo should not be used if d  was larger than, say, 12. To everyone’s amazement 

Paskov’s  experiments showed that the problem scales as ε/1 ; the exponential factor  in d 

 did not appear.  Anargyros Papageorgiou and others obtained similar results for a variety 

of financial derivatives and also for value at risk calculations.  Quasi-Monte Carlo is now 

being used extensively in the financial community.  

There is no existing theory that predicts ε/1  scaling for certain financial 

calculations, so we need to create such a theory. Note the similarity to physics.  There is a 

well developed theory which doesn’t predict the experimental evidence.  That means the 

theory has to be refined.  I believe the following to be true.  Formalize what is special 

about finance.  Then prove the complexity scales as ε/1  with a worst case assurance. If 

true, this would be a double win over Monte Carlo since Monte Carlo scales as 
2/1 ε  with 

only a stochastic assurance. I call this the Holy Grail theorem of mathematical finance 

because we have looked for it for a very long time, believe it is true, but haven’t yet 

found it. 

 I will now briefly discuss the future, starting with Moore’s law.  It is generally 

believed that Moore’s law will end in one or two decades for a number of reasons: 

• There are physical limits to the smallness of what we can put on a chip. 

•  There are financial limits because the cost of building a chip manufacturing facility 

doubles with each chip generation. 
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What might come after silicon computers?  DNA computation will probably be 

special purpose. Nanotube chips are being studied. There is much interest in quantum 

computing and I’ll confine myself to that. Can superposition of states on a quantum 

computer help us solve problems which are intractable on  a classical computer? The 

quantum algorithm which has stirred the most interest is Peter Shor’s factoring algorithm. 

 To understand the significance of this algorithm, I have to remind you of a few basics of 

cryptography. 

A widely used cryptosystem, the RSA system, depends on the belief that factoring 

large  integers is intractable.  That is, the essence of public key cryptography is scaling 

where the size of the problem is the number of bits in the number to be factored.  Shor 

gives a polynomial time algorithm for factoring on a quantum computer.  Almost all the 

algorithm research for quantum computing has been for discrete problems such as integer 

factorization. But Richard Feynman proposed that quantum systems could be simulated 

by quantum computers. Quantum mechanics is governed by continuous models such as 

path integration and Schroedinger’s equation. Many of the problems in science, 

engineering and economics require the solution of continuous models. There is a joint 

Columbia/MIT project (Traub and Henryk Wozniakowski, Columbia, and Seth Lloyd, 

MIT) on algorithms and complexity for solving continuous problems on quantum 

computers.  One of  our goals is to find important problems which are intractable on 

classical computers and tractable on quantum computers. 

As you know, although quantum computers with few qubits have been built, it is 

not clear whether quantum computers will prove to be an answer to the end of Moore’s 

law for silicon-based classical computers. A difficulty is whether the superposition of 
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states can be maintained or, to use the interpretation of the Copenhagen school, whether 

we can avoid the collapse of the wave function by measurement or interaction of the 

computer with its environment. The thrust of our research is if quantum computers can be 

built, for what problems can we achieve big wins? 

 To summarize: it seems to me that scaling laws are a central theme for computing 

past, present and future.  I’ll end by posing four questions about scaling laws in the 

future: 

1. Can we build quantum computers and use them to solve problems which are 

intractable on classical machines?  

2. Are there other means by which we can continue the enormous strides in 

computation without the benefit of Moore’s law for silicon chips? 

3. How should we plan our computing and networking in light of the fact that the 

doubling rate of bandwidth is much shorter than that of chip density? 

4. Settle the conjecture P ≠  NP. 
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