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Abstract

In a serial dictatorship, agents are processed sequentially and assigned to their favorite remaining
item on their turn. We introduce and analyze a class of coalition formation games in variants of the
serial dictatorship mechanism. Rather than agents being processed in a random order, the order is
determined in a principled way by the coalition structure. We demonstrate that these games are non-
hedonic by showing that an agent’s utility depends not only on the members of her coalition, but on the
entire coalition structure. We primarily analyze the strategic behavior of selfish agents in these models.
First, we consider a model where agents have no knowledge of other agents’ preferences, and as such
base decisions only on coalition sizes. We then consider a model in which agents have full knowledge
of other agents’ preferences, but only have utility for their top choice, and are only assigned if would
they receive their top choice. For both of these models, we describe how an agent should choose which
coalition to join, and when an agent should prevent others from joining her coalition. This leads to a
characterization of equilibria and stable configurations. Finally, we explain why reasoning about full
knowledge of preference lists is difficult. We wonder if aspects of such reasoning are in fact NP-hard, and
leave this as an open question.

1 Introduction

Sometimes, success depends more on who your allies are than on who you are. Maybe you’re a judge hoping
for an appointment by the next president; or you work at Facebook and your cousin just happens to be
Mark Zuckerberg; or you’re looking for a team for a tug-of-war tournament. When you choose your allies,
you don’t know what team will end up winning, or who will become politically powerful or rich (maybe it
will be you!), but the outcome most certainly will affect you. With such limited information, how should
you choose to align yourself?

In this report, we analyze coalition formation in variants of the serial dictatorship mechanism. The
primary distinction from the original mechanism is that, instead of agents being ordered randomly, a random
dictator is chosen from among the agents, and this dictator and their coalition get assigned first. Equivalently,
we can consider choosing a random coalition to go first, weighted by the coalition’s size. In the examples
above, the random dictator (coalition) would correspond to who gets elected president or becomes a rich
CEO (or which tug-of-war team wins). Crucially, the identity of the dictator is not known during coalition
formation, since otherwise they would have no incentive to join coalitions.

More formally, we study the following model for coalition formation in serial dictatorships (CFSD).

1.1 General model

Let A be a set of agents who are to be assigned to items in X, where |A| = |X| = n. Coalitions have no
effect when n ≤ 2, so we assume n > 2 throughout the paper. Each agent i has a ranking Ri over X. Define
a coalition to be any non-empty subset of these agents. Let a coalition structure be a set of coalitions such
that each agent is in exactly one coalition, i.e., a partitioning of the agents into coalitions.

Our general model, a variant of the serial dictatorship mechanism, consists of the following four steps:
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1. Ranking submission. Each agent i submits a ranking Ri.

2. Coalition formation. A coalition structure C is determined by some mechanism.

3. Global ordering. A random dictator d is chosen from among the agents. The dictator’s coalition c(d)
goes first, in a uniformly random ordering, followed by all the other agents in a uniformly random
ordering.

4. Serial assignment. Agents are processed in the ordering determined by step 3, where each agent i is
assigned her top remaining choice under Ri when it is her turn, or is unassigned if no ranked choice
remains.

The global ordering and serial assignment steps are identical in all models considered in this report. We
primarily consider three variables in this model: whether agents know each other’s rankings, the number of
items ranked, and whether an agent can prevent others from joining her coalition. Section 3 analyzes the
model where agents have no knowledge of each other’s preferences and all agents submit a full, strict ranking
over X. Section 4 presents results for the model where agents know each other’s preferences but each agent’s
ranking consists only of their top choice and they have no utility for any other assignment. For each of
these models, we consider both the case where an agent can join whichever coalition she desires, and the
case where the coalition’s current members have the option to reject her request to join. Finally, Section 5
discusses the complications that arise when agents can have utility for more than one outcome and general
knowledge of preferences.

2 Related Work

The highly combinatorial, probabilistic, and non-convex nature of CFSD makes it fairly unique. Combinato-
rial auctions are somewhat similar to CFSD as agents have preferences over a partitioning of resources. While
it may appear fairly easy to model CFSD as a combinatorial auction with each agent bidding their expected
utility for each coalition structure, even determining an agents expected utility for a given structure is itself,
in the general case, a combinatorial problem. Further, it is unclear how solutions to combinatorial auctions
correspond to stable structures in CFSD, which, combined with the apparent intractability of determining
expected utility, makes work from combinatorial auction theory generally inapplicable.

Hedonic games are coalition formation games in which each player’s utility is defined by the members of
her coalition. We will demonstrate that CFSD is not such a game as each player’s utility is a probability
distribution defined not only by the members of their own coalition but by the global coalition structure.
However, we explore many ideas that are similar to those in the hedonic literature.

2.1 Hedonic Games

Dreze and Greenberg [1] introduced the concept of hedonic coalitions in resource allocation games and
explored the Pareto optimal coalition structures along with notions of stability, specifically individual stability
1 and contractual individual stability 2. The purely hedonic model was formalized in 1998 by Bogomolnaia
and Jackson [2]. In their work they explored four types of stability: individual stability, contractual individual
stability, core stability 3, and Nash stability 4. They also proved the necessary conditions for stability.
Banerjee, Konishi and Sönmez [3] showed that the core of coalition formation games are generally empty
without very strong properties. Ballester and Coralio showed that finding stable structures given arbitrary
preferences is generally a NP-compete problem [4]. One might think that this would imply that finding
stable structures in CFSD would also be NP-compete, however, the utility gained from possible coalition
structures is highly structured (because of the entanglement with the serial dictatorship mechanism) which
makes it difficult to reduce arbitrary hedonic games to CFSD.

1no player can switch into a coalition while which improve herself and not hurt the coalition she is switching into, a concept
we used in what call exclusive formation games

2same as individually stability except that player must not hurt the coalition that she is leaving
3no set of players can opt out of the game to form a better coalition than the one they are currently in; this does not make

much sense in our CFSD, as preferences are over the whole structure not just the agent’s coalition
4no player can arbitrarily switch into a coalition and make herself better, something we considered in every model
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3 Coalition formation with unknown preferences

In this section we consider coalition formation, under the assumption that agents have no knowledge of each
other’s preferences. Let c(i) be the coalition to which agent i belongs, and let s(i) be agent i’s spot in the
resulting ordering, where the best possible spot is 0 and the worst is n− 1.

3.1 Expected utility

We begin with an exact calculation an agent’s expected utility given any utility function over her preferences,
and any arbitrary coalition structure. This will also demonstrate that coalition formation games are not
hedonic, as the resulting expression can depend on the entire coalition structure.

Define IRd : X → {0, 1} by

IRd(x) =

{
1 if xRd where R is some binary relation

0 otherwise

Expected utility can be calculated as the sum over ` of the expected utility given being in spot ` times
the probability of being in spot ` for ` ∈ {0, 1, ..., n − 1}. The expected utility given being in spot ` is the
sum over k of the probability of getting choice k given spot ` times the expected utility of choice k. Note
given spot ` a agent in the worst case will receive their `th choice. Now without loss of generality assume
X = {0, 1, ..., n − 1} and i’s preference list, Ri, is (0, 1, ..., n − 1) so i’s kth choice is k − 1. Let ai be the
assignment given to i (a random variable dependent on s(i), Ri, and on the coalition structure C). Finally,
let Ui(ai) be the utility agent i gets from assignment ai.

E
[
Ui(ai)

]
=

n−1∑
`=0

(
Pr(s(i) = `) · E

[
Ui(ai | s(i) = `)

])

=

n−1∑
`=0

(
Pr(s(i) = `) ·

n∑
k=0

(
Pr(ai = k | s(i) = `) · Ui(k)

))

=

n−1∑
`=0

(
Pr(s(i) = `) ·

∑̀
k=0

(
Pr(ai = k | s(i) = `) · Ui(k)

))
We next calculate Pr(s(i) = `). This is dependent on C and can be expressed as:

Pr(s(i) = `) = I>`(|c(i)|) ·
|c(i)|
n
· 1

|c(i)|
+

∑
c∈C\c(i)

I≤`(|c|) ·
|c|
n
· 1

n− |c|

= I>`(|c(i)|) ·
1

n
+

∑
c∈C\c(i)

I≤`(|c|) ·
|c|

n(n− |c|)

The indicator function is necessary, since Pr(s(i) = `) = 0 if d ∈ c(i) and |c(i)| ≤ `. Similarly, Pr(s(i) = `) = 0
if d 6∈ c(i) and |c(d)| > `. For the sake of brevity we shall leave Pr(s(i) = `) for the remainder of the proof.

If we assume that all agents’ preferences are uniformly distributed over the set of permutations of
(0, 1, ..., n− 1), we can define i’s probability of getting her kth choice given spot ` as the probability that a
random permutation of elements from {0, 1, ..., n− 1} of length ` contains elements {0, 1, ..., k − 1} and not
k5. However, since order doesn’t matter, we will consider combinations instead.

By definition, there are
(
n
`

)
` length combinations drawn from {0, 1, ..., n − 1}. The number of ` length

combinations containing {0, 1, ..., k−1} and not k can be counted as the number of `−k length combinations

5The uniform distribution of preference induces uniform distribution of assignments. This is because when it is the first
agent’s turn to pick they will pick their first choice which is uniform distributed over X. Now by induction, given some uniformly
selected Y ⊂ X where Y are the choices of first j − 1 agents, we see that agent j chooses the top choice from Rj which is not
already in Y . As both are uniform, all x ∈ X are equally likely to be in X \ Y and to be top remaining choice in Rj . Hence
agent j has a uniform probability of selecting any given x ∈ X. Therefore uniformly random preferences induce uniformly
random assignments.
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drawn from {0, 1, ..., n− 1} \ {0, 1, ..., k} which is simply
(
n−k−1
`−k

)
. Hence the probability of i getting her kth

choice given spot ` is
(n−k−1

`−k )
(n
`)

. Now we have

E
[
Ui(ai)

]
=

n−1∑
`=0

(
Pr(s(i) = `) ·

∑̀
k=0

(
Pr(ai = k) · Ui(k)

))

=

n−1∑
`=0

(
Pr(s(i) = `) ·

∑̀
k=0

((n−k−1`−k
)(

n
`

) · Ui(k)
))

Thus given an agent’s utility function and a coalition structure, we can in principle exactly compute her
expected utility. However, our expression for E

[
Ui(ai)

]
is quite unwieldy, and consequently not much help

if we desire a clean analysis of strategies in coalition formation games.

3.2 Expected position in the ordering

Next, we calculate an exact expression for an agent i’s expected position in the ordering under this model.
Although the resulting expression is far from elegant, it is wieldy enough to be of use in an analysis of
strategies in these games. In particular, we will use this expression in our proofs in Section 3.3 and Section 3.4.

Let α(i) = E[|c(d)| | d 6∈ c(i)] for brevity. We handle |c(i)| = n as a special case, since α(i) is undefined
when Pr(d 6∈ c(i)) = 0. Then for |c(i)| < n,

E
[
s(i) | |c(i)| < n

]
= Pr(d ∈ c(i)) · E[s(i) | d ∈ c(i)] + p(d 6∈ c(i)) · E[s(i) | d 6∈ c(i)]

=
|c(i)|
n

( |c(i)| − 1

2

)
+
n− |c(i)|

n

(
α(i) +

n− α(i)− 1

2

)
=
|c(i)|2 − |c(i)|

2n
+

(n− |c(i)|)(n+ α(i)− 1)

2n

=
|c(i)|2 − |c(i)|+ n2 + nα(i)− n− |c(i)|n− |c(i)|α(i) + |c(i)|

2n

=
|c(i)|2 + n2 + α(i)(n− |c(i)|)− n(|c(i)|+ 1)

2n

For |c(i)| = n, we have

E
[
s(i) | |c(i)| = n

]
= Pr(d ∈ c(i)) · E[s(i) | d ∈ c(i)] = 1 · n− 1

2
=
n− 1

2

Observe that we can recover the |c(i)| = n result from the more general expression, since the term
containing the undefined α(i) drops out. Thus we will use the more general expression going forward.

The α(i) term gives a clear demonstration of the dependence of these games on the entire coalition
structure. Intuitively, if the all of the agents not in c(i) are in a single coalition c′, then |c′| = n − |c(i)|
agents are guaranteed to be ahead of i if d 6∈ c(i). On the other hand, if all agents not in c(i) are in singleton
coalitions, then only one spot will be taken by the dictator’s coalition.

In the next section, we formally define the first coalition formation game we consider, and present our
results for that game.

3.3 Free coalition formation

The Free Coalition Formation Game consists solely of each agent i choosing an integer from 1 to n inclusive,
where each integer corresponds to a coalition. For each integer k chosen by at least one agent, the set of all
agents who chose k forms an element of the resulting coalition structure, a coalition c ⊆ A. Agents cannot
be prevented from joining a coalition in this version of the game.

Since we assume in Section 3 that agents have no knowledge of other agents’ preferences, all they can do
is attempt to minimize their spot in the ordering. Therefore for the remainder of Section 3, we assume each
agent i receives utility Ui(s(i)) = n− s(i). Note that this defines a fixed-sum game.
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3.3.1 Strategies for free coalition formation

We now describe strategies for selfish agents in the Free Coalition Formation Game, ending with a charac-
terization of the unique dominant strategy equilibrium.

Lemma 1. Let c1 and c2 be two coalitions with |c2| ≥ |c1|. Then any member of c1 can strictly decrease her
expected spot in the ordering by switching to c2, assuming no other agents switch coalitions.

Proof. Let i be a member of c1. Let |c1| = k and |c2| = k + δ − 1 (k + δ if i switches) for some δ ∈ N+. Let
αc1(i) and αc2(i) be the values of α(i) for i ∈ c1 and i ∈ c2 respectively. We compare i’s expected spot in
the ordering if she remains in c1 to her expected spot if she switches, and confirm that switching to c2 yields
a lower expected spot in the ordering.

We handle k + δ = n as a special case in order to prevent division by zero.
Case 1: k + δ = n. Since only i switches, every other agent must already be in c2. This implies that

k = 1 and αc1(i) = n− 1. Therefore

E
[
s(i) | i ∈ c1

]
− E

[
s(i) | i ∈ c2

]
=
k2 + n2 + αc1(i)(n− k)− n(k + 1)

2n
− n− 1

2

=
12 + n2 + (n− 1)(n− 1)− n(1 + 1)− n(n− 1)

2n

=
n2 − 3n+ 2

2n

Thus since n > 2, we have E
[
s(i) | i ∈ c1

]
−E
[
s(i) | i ∈ c2

]
> 0. Therefore E

[
s(i) | i ∈ c1

]
> E

[
s(i) | i ∈ c2

]
implying that i’s expected spot is strictly decreased by switching to c2.

Case 2: k + δ < n. This is the case where the analysis is substantial. We have

E
[
s(i) | i ∈ c1

]
− E

[
s(i) | i ∈ c2

]
=
k2 + n2 + αc1(i)(n− k)− n(k + 1)

2n
− (k + δ)2 + n2 + αc2(i)(n− (k + δ))− n((k + δ) + 1)

2n

=

[
k2 − (k + δ)2

]
+
[
αc1(i)(n− k)− αc2(i)(n− k − δ)

]
+
[
n(k + 1 + δ)− n(k + 1)

]
2n

=
−2kδ − δ2 +

[
αc1(i)(n− k)− αc2(i)(n− k − δ)

]
+ δn

2n

Recall that α(i) is the expected size of the dictator’s coalition, given that the dictator is not in i’s
coalition. So

α(i) =
∑

c6=c(i)

Pr(d ∈ c |d 6∈ c(i)) · |c| =
∑

c6=c(i)

|c|
n− |c(i)|

· |c| =
∑

c6=c(i)

|c|2

n− |c(i)|

αc1(i)(n− k)− αc2(i)(n− k − δ) =
[
(n− k)

∑
c6=c1

|c|2

n− k

]
−
[
(n− k − δ)

∑
c6=c2

|c|2

n− (k + δ)

]
=
∑
c6=c1

|c|2 −
∑
c6=c2

|c|2

=
[
(k + δ − 1)2 +

∑
c 6=c1,c2

|c|2
]
−
[
(k − 1)2 +

∑
c 6=c1,c2

|c|2
]

= (k + δ − 1)2 − (k − 1)2

= 2kδ + δ2 − 2δ

We now plug this into our expression for E
[
s(i) | i ∈ c1

]
− E

[
s(i) | i ∈ c2

]
.

E
[
s(i) | i ∈ c1

]
− E

[
s(i) | i ∈ c2

]
=
−2kδ − δ2 + 2kδ + δ2 − 2δ + δn

2n

=
δn− 2δ

2n
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Since δ > 0 and n > 2, E
[
s(i) | i ∈ c1

]
− E

[
s(i) | i ∈ c2

]
> 0 in this case as well, which completes the

proof. Note that plugging in δ = n−1 here yields the expression that was derived in case 1. We also observe
that the advantage of switching depends only on the total number of agents and the difference between the
coalition sizes, not their absolute size.

Corollary 3.0.1. The change in utility from switching from c1 to c2 is zero if |c2| = |c1| − 1, negative if
|c2| < |c1| − 1, and positive if |c2| ≥ |c1|.

Proof. Suppose |c2| = |c1|−1. Then after the switch, |c1| = |c2|−1. By symmetry, undoing the switch must
yield the same change in utility as the original switch. Since the combined utility change from switching and
undoing the switch must be zero, switching and undoing the switch must each yield zero change in utility.

Suppose |c2| < |c1| − 1. Then after switching to c2, |c1| ≥ |c2|. Then Lemma 1 implies that undoing the
switch must increase the agent’s utility; therefore the switch must have decreased the agent’s utility.

Finally, if |c2| ≥ |c1|, an application of Lemma 1 completes the proof.

Theorem 3.1. Belonging to the largest coalition is the unique dominant strategy for all agents in the Free
Coalition Formation Game.

Proof. This is an immediate consequence of Lemma 1. While any agent i is not in the strictly largest
coalition, there must be another coalition of at least equal size, and she can always strictly increase her
utility by switching to that coalition. She continues to do so until she belongs to the largest coalition. This
is true regardless of the rest of the coalition structure.

Corollary 3.1.1. All agents choosing the same coalition is the unique dominant strategy equilibrium.

3.4 Exclusive coalition formation

We would also like to analyze a model wherein coalitions can choose whether to allow new members to join.
To do so, we must first define a new coalition formation game. In contrast to the Free Coalition Game,
which was a one-shot game, this will be a sequential game.

We assume that each agent is initially in a coalition just with herself. In each round, we iterate through
the agents in an arbitrary order that is the same for all rounds. Each agent, on her turn, may request to
leave her current coalition and join a new one. She is accepted into the new coalition if all the existing
members would benefit by adding the agent, i.e., if each member has a higher utility for the new coalition
structure induced by accepting the request. We run rounds repeatedly until no agent proposes to join a new
coalition.

An agent may only request to join coalition c given current coalition structure C if she has not previously
requested to join c at a time when C was also the coalition structure. In other words, an agent can request
to join the same coalition multiple times, even if rejected, but only if something has changed in the rest of
coalition structure. This is because whether a request is accepted could in principle depend on the entire
coalition structure.

Since there are a finite number of possible coalition structures and a finite number of coalitions, this game
will always terminate. Also, note that the criteria for acceptance into a coalition (e.g., unanimity, majority,
etc.) does not matter, because the agents of a coalition are indistinguishable if we disregard preferences, and
thus should all benefit or not benefit together.

A strategy for an agent consists of a request (or pass) for every coalition structure. We continue to use
the same utility function of Ui(s(i)) = n − s(i). When we refer to an agent’s utility at a point during the
game, we mean her utility if the game were to terminate with that coalition structure.

3.4.1 Strategies for exclusive coalition formation

Lemma 1 gives conditions under which an agent wants to join a coalition. Lemma 1 still applies to exclusive
coalition formation, but now we also need to know the conditions under which a request to join is accepted.

Lemma 2. If an agent currently in c1 requests to join c2, c2 will accept if and only if |c2| − |c1| <
n

2
− 1.
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Proof. The proof is similar that that of Lemma 1. Let i be an agent currently in c2, and let j be the agent
requesting to join c2. Since we disregard preferences, all agents in c2 will be affected in the same way.
Therefore it suffices to show that i would benefit.

Let |c2| = k2 (k2 + 1 if j is accepted), and let |c1| = k1 (k1 − 1 if j is accepted). Let αc1(i) and αc2(i)
be the values of α(i) for j ∈ c1 and j ∈ c2, respectively. We compare i’s expected spot in the ordering if j
is accepted to her expected spot if j is rejected. We again handle k2 + 1 = n as a special case to prevent
division by zero.

Case 1: k2 + 1 = n. In this case, initially c1 = {j} and c2 = A\{j}, so αc1(i) = 1. Therefore

E
[
s(i) | j ∈ c1

]
− E

[
s(i) | j ∈ c2

]
=
k22 + n2 + αc1(i)(n− k2)− n(k2 + 1)

2n
− n− 1

2

=
(n− 1)2 + n2 + 1 · (n− (n− 1))− n((n− 1) + 1)− n(n− 1)

2n

=
n2 − 2n+ 1 + n2 + n− n+ 1− n2 − n2 + n

2n

=
2− n

2n

Since n > 2, E
[
s(i) | j ∈ c1

]
−E

[
s(i) | j ∈ c2

]
< 0. Therefore E

[
s(i) | j ∈ c1

]
< E

[
s(i) | j ∈ c2

]
, meaning

that i’s expected spot in the order is strictly increased by allowing j to join. Therefore j is rejected in this
case.

Case 2: k2 + 1 < n. In this case,

E
[
s(i) | j ∈ c1

]
− E

[
s(i) | j ∈ c2

]
=
k22 + n2 + αc1(i)(n− k2)− n(k2 + 1)

2n
− (k2 + 1)2 + n2 + αc2(i)(n− (k2 + 1))− n((k2 + 1) + 1)

2n

=

[
k22 − (k2 + 1)2

]
+
[
αc1(i)(n− k2)− αc2(i)(n− k2 − 1)

]
+
[
n(k2 + 2)− n(k2 + 1)

]
2n

=
−2k2 − 1 +

[
αc1(i)(n− k2)− αc2(i)(n− k2 − 1)

]
+ n

2n

Recall that α(i) =
∑

c6=c(i)

|c|2

n− |c(i)|
. We proceed along the same lines as in the proof of Lemma 1. The

key difference that is there for this lemma, i remains in the same coalition, so the limits of both sums are
c 6= c2.

αc1(i)(n− k2)− αc2(i)(n− k2 − 1) =
[
(n− k2)

∑
c6=c2|j∈c1

|c|2

n− k2

]
−
[
(n− k2 − 1)

∑
c6=c2|j∈c2

|c|2

n− (k2 + 1)

]
=

∑
c6=c2|j∈c1

|c|2 −
∑

c6=c2|j∈c2

|c|2

=
[
k21 +

∑
c 6=c1,c2

|c|2
]
−
[
(k1 − 1)2 +

∑
c6=c1,c2

|c|2
]

= 2k1 − 1

Therefore:

E
[
s(i) | j ∈ c1

]
− E

[
s(i) | j ∈ c2

]
=
−2k2 − 1 + 2k1 − 1 + n

2n
=
n+ 2(k1 − k2 − 1)

2n

This implies that E
[
s(i) | j ∈ c1

]
> E

[
s(i) | j ∈ c2

]
if and only if n + 2(k1 − k2 − 1) > 0. Therefore

accepting j strictly decreases i’s expected position if and only if k2 − k1 < n/2− 1, as required.

We say that a coalition structure is individually stable if there is no agent who can increase her utility
without any other agents switching coalitions.
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Theorem 3.2. Any individually stable coalition structure of the Exclusive Coalition Formation Game con-

sists of either (1) exactly two coalitions, one having size at least
3n− 2

4
, or (2) a single coalition containing

all agents.

Proof. First, we show that no coalition structure with more than two coalitions is individually stable. Suppose
there are at least three coalitions, and let c1, c2, and c3 be three coalitions. Without loss of generality assume
1 ≤ |c1| ≤ |c2| ≤ |c3|. Note that |c3| ≤ n− 2, since |c1|+ |c2|+ |c3| ≤ n.

Then: (|c3| − |c2|) + (|c2| − |c1|) ≤ (n− 2− |c2|) + (|c2| − 1) = n− 3. Therefore at least one of (|c3| − |c2|)
and (|c2| − |c1|) is at most (n− 3)/2.

Suppose |c2| − |c1| ≤ (n − 3)/2 < (n − 2)/2 = n/2 − 1. Then c2 will accept an agent from c1 which
requests to join, by Lemma 2. By Lemma 1, any agent in c1 would prefer to join c2. Since there is an agent
who wishes to join a coalition which would accept her, this coalition structure is not individually stable. The
case for |c3| − |c2| ≤ (n− 3)/2 follows similarly. This shows that no coalition structure with more than two
coalitions is individually stable.

Now suppose there are exactly two coalitions, c1 and c2. Without loss of generality assume |c2| ≥ |c1|.
Then any agent from c1 always would prefer to switch to c2, again by Lemma 1. Suppose |c2| <

3n− 2

4
.

Then |c1| = n− |c2| >
n + 2

4
.

Therefore we have |c2| − |c1| <
3n− 2

4
− n + 2

4
=

2n− 4

2
= n/2− 1. Thus if |c2| <

3n− 2

4
, c2 is willing to

accept an agent from c1, so any individually stable coalition structure must have |c2| ≥
3n− 2

4
.

If |c2| ≥
3n− 2

4
, we have |c2| − |c1| ≥

3n− 2

4
− n + 2

4
= n/2 − 1, so by Lemma 2, c2 will not accept any

agents from c1. By Corollary 3.0.1, no agent from c2 would wish to switch to c1, since |c1| < |c2|. Therefore
a coalition structure with exactly two coalitions is individually stable if and only if one has size at least 3n/4.

Finally, a single coalition is indeed individually stable, because Corollary 3.0.1 implies that any deviation
strictly decreases an agent’s utility.

We define the utility of a move by agent i to be the utility of agent i after the move minus the utility
of agent i before the move. We call an agent myopic if she always makes the move with highest utility. We
call an agent weakly myopic if she makes a positive utility move whenever one exists, and never makes a
negative utility move.

Lemma 3. If all agents are weakly myopic, the coalition structure upon termination must be individually
stable.

Proof. We know that the game always terminates: let T be the time at which it terminates. Let Ct be the
coalition structure at time t.

Suppose CT is not individually stable. Then there exists an agent i and coalition c such that i could
improve her utility by switching to c, and c would accept her. If i has never before requested to join c under
CT , then switching to c is a legal positive utility move. Therefore i has at least one positive utility move, so
by assumption, she must make a positive utility move. Therefore the game does not terminate at time T , a
contradiction.

Thus i must have previously requested to join c under the same coalition structure CT . Assume that i
first requested to join c under CT at time t′. Therefore CT = Ct′ . Since c is willing to accept i and had not
accepted i under CT before by assumption, i successfully joined c at time t′.

Define a function φ(t) by φ(t) =
∑

c′∈Ct
|c′|2. It is trivial that an agent choosing to pass on her turn leaves

φ(t) unchanged. Suppose at time t, an agent moves from c1 to c2, where k1 = |c1| and k2 = |c2| at time t
(so |c1| = k1 − 1 and |c2| = k2 + 1 at time t+ 1). Then

φ(t+ 1)− φ(t) =
∑

c′∈Ct+1

|c′|2 −
∑
c′∈Ct

|c′|2

=
[
(k1 − 1)2 + (k2 + 1)2 +

∑
c′∈Ct+1\{c1,c2}

|c′|2
]
−
[
k21 + k22 +

∑
c′∈Ct\{c1,c2}

|c′|2
]
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Since all coalitions other than c1 and c2 are unchanged by this move, we have∑
c′∈Ct+1\{c1,c2}

|c′|2 =
∑

c′∈Ct\{c1,c2}

|c′|2

and therefore

φ(t+ 1)− φ(t) = (k1 − 1)2 + (k2 + 1)2 − k21 − k22
= k21 − 2k1 + 1 + k22 + 2k2 + 1− k21 − k22
= 2(k2 − k1 + 1)

Thus φ(t + 1) − φ(t) > 0 whenever k2 ≥ k1, and φ(t + 1) − φ(t) < 0 only if k2 < k1 − 1. Then by
Corollary 3.0.1, φ(t + 1) − φ(t) > 0 for any positive utility move, and φ(t + 1) − φ(t) < 0 only for negative
utility moves.

Since CT = Ct′ , φ(T ) = φ(t′). By assumption, agent i switching to c at time t′ is a positive utility move,
so φ(t′ + 1)− φ(t′) > 0. Thus there must exist some t′′ where t′ < t′′ < T where φ(t′′ + 1)− φ(t′′) < 0. But
this implies that an agent made a negative utility move, which is a contradiction.

Therefore, if each agent makes a positive utility whenever possible, and never makes a negative utility
move, the coalition structure upon termination must be individually stable.

Theorem 3.3. If all agents are weakly myopic, then the Exclusive Coalition Formation Game always ter-
minates with exactly two coalitions, one with size exactly b3n/4c.

Proof. We now show by induction that no coalition ever reaches size greater than b3n/4c.
Initially all coalitions have size 1, so the base case is trivially satisfied. For the inductive step, suppose

that at time t, no coalition has size greater than b3n/4c. Let c1 be the largest coalition at time t+ 1. Then
|c1| ≤ b3n/4c.

Suppose |c1| ≤ b3n/4c − 1. Since at most one agent changes coalitions per round, |c1| ≤ b3n/4c at time
t+ 1, and we are done.

Therefore assume |c1| = b3n/4c. Since b3n/4c ≥ 3n− 2

4
, any other coalition c2 has size at most n−|c1| ≤

n + 2

4
. Thus, |c1| − |c2| ≥

3n− 2

4
− n + 2

4
= n/2− 1 for any c2 6= c1. Therefore |c1| would not accept an agent

from any coalition, implying that |c1| = b3n/4c at time t+ 1. This completes the induction and shows that
no coalition ever reaches size greater than |c1| = b3n/4c.

By Lemma 3, the coalition structure upon termination must be individually stable. Then by Theorem 3.2,

we must terminate with a coalition of size at least
3n− 2

4
. Since b3n/4c is the smallest integer that is at

least
3n− 2

4
, we must terminate with a coalition of size at least b3n/4c. Since by the above induction, no

coalition ever reaches size greater than b3n/4c, we must terminate with a coalition of size exactly b3n/4c.
Therefore there must be at least two coalitions upon termination. By Theorem 3.2, any individually

stable coalition structure has at most two coalitions. Thus we must terminate with exactly two coalitions,
which completes the proof.

It is worth noting that there are cases where making a negative utility move can be better in the long
term, although they require the rest of the agents to have unintuitive strategies. For example, suppose there
are two coalitions c1 and c2 where |c1| = n/4 and |c2| = 3n/4. Suppose agent i is in c1. A request from i to
join c2 would be rejected, so i can either remain in c1, or leave to form a coalition consisting of just herself.
Suppose all of the agents in c2 have the following strategy: join i’s new coalition if i leaves c1, otherwise do
nothing. Thus if i remains in c1, she will end up with a coalition of size n/4, but if she leaves, she will end
up with a coalition of much larger size, which is better for her in the end.

4 Petulant child model

We now move on to a second class of coalition formation games. Unlike in Section 3, the petulant child
model assumes that agents have complete knowledge of other agents’ preferences. However, we make the
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simplifying assumption that all agents care only about their odds of getting their top choice, know every
other agent’s top choice, and submit rankings containing only this top choice. Thus if an agent’s top choice
is not available on her turn, she is unassigned.

Therefore agents only want to maximize the probability of being the first of the agents with the same
top choice. This is similar to a small child who does not get their favorite toy from a toybox. Instead of
agreeing to play with their second favorite toy, they may choose to throw a tantrum and receive zero utility.
While it may seem unlikely that such an agent would be capable of strategic thought, we shall analyze their
optimal behavior anyway.

We will also assume that the top choice submitted by agent i in Ri and used in the assignment step is the
same top choice known to all other agents. Under this restriction, the mechanism is truthful, since agents
have no utility for any choice other than their top choice.

In the following, let Mi be the set of agents with the same top choice as agent i. We will assume Mi > 1,
since otherwise i will get her top choice no matter what, and has no incentive to participate in forming
coalitions.

4.1 Expected utility

Since agents now have knowledge of each other’s preferences, we must study the expected utility directly
and not use position as a proxy. Let β(i) = Pr(Mi ∩ c(d) = ∅ | d /∈ c(i)); essentially, this is the probability
that i has a chance of getting her top choice given that her coalition isn’t chosen. Then the probability i
gets her top choice is:

Pr(d ∈ c(i)) 1

|Mi ∩ c(i)|
+ Pr(d /∈ c(i))β(i)

1

|Mi|

=
|c(i)|

n|Mi ∩ c(i)|
+

(n− |c(i)|)β(i)

n|Mi|

=
|c(i)||Mi|+ β(i)|Mi ∩ c(i)|(n− |c(i)|)

n|Mi||Mi ∩ c(i)|

4.2 Free coalition formation

First, we will study optimal behavior and equilibria using the Free Coalition Formation Game introduced in
Section 3.3.

4.2.1 Strategies for free coalition formation

We now describe optimal strategies for selfish agents in the Free Coalition Formation Game and petulant
child model, ending with a characterization of the Nash equilibria.

Lemma 4. For an agent i choosing among coalitions which all have competitors (other members of Mi)
or all do not, i maximizes her expected utility by seeking the highest ratio of coalition size to number of

competitors after i joins |c|+1
|Mi∩c|+1 , assuming no other agents switch coalitions.

Proof. Consider an agent i deciding whether to switch from coalition c1 to c2. i’s change in utility from
switching will be

(|c2|+ 1)|Mi|+ βc2(i)(|Mi ∩ c2|+ 1)(n− |c2| − 1)

n|Mi|(|Mi ∩ c2|+ 1)
− |c1||Mi|+ βc1(i)|Mi ∩ c1|(n− |c1|)

n|Mi||Mi ∩ c1|

=
(|c2|+ 1)|Mi||Mi ∩ c1| − |c1||Mi|(|Mi ∩ c2|+ 1)

n|Mi||Mi ∩ c1|(|Mi ∩ c2|+ 1)
+
βc2(i)(n− |c2| − 1)− βc1(i)(n− |c1|)

n|Mi|

=
(|c2|+ 1)|Mi ∩ c1| − |c1|(|Mi ∩ c2|+ 1)

n|Mi ∩ c1|(|Mi ∩ c2|+ 1)
+

(∑
c6=c2∪{i} |c| if Mi ∩ c = ∅

)
−
(∑

c6=c1\i |c| if Mi ∩ c = ∅
)

n|Mi|

=
(|c2|+ 1)|Mi ∩ c1| − |c1|(|Mi ∩ c2|+ 1)

n|Mi ∩ c1|(|Mi ∩ c2|+ 1)
+

(|c1| − 1 if Mi ∩ c1\i = ∅)− (|c2| if Mi ∩ c2 = ∅)
n|Mi|
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We want to consider two cases: either i is switching between coalitions where neither has competitors
(Mi ∩ c1\i = Mi ∩ c2 = ∅) or where both have competitors (Mi ∩ c1\i,Mi ∩ c2 6= ∅). In the first case,
Mi ∩ c2 = Mi ∩ c1\i = ∅, i.e., i is considering two coalitions where no one shares her top choice, so i should
switch if

|c2|+ 1− |c1|
n

+
|c1| − 1− |c2|

n|Mi|
≥ 0

|c2|+ 1 ≥ |c1|

As we would expect, i should always switch to a larger coalition if neither coalition contains a competitor
for her top choice. However, if Mi ∩ c1\i,Mi ∩ c2 6= ∅, i.e., both coalitions have competitors, i should switch
if

(|c2|+ 1)|Mi ∩ c1| − |c1|(|Mi ∩ c2|+ 1) ≥ 0

|c2|+ 1

|Mi ∩ c2|+ 1
≥ |c1|
|Mi ∩ c1|

So interestingly, if both have competitors, what matters is the ratio of size to number of competitors. This
matches what we saw if both coalitions lack competitors, since the denominators in the above expression
will just be 1.

Thus for any pair of coalitions (both with or both without competitors), i maximizes her utility by
maximizing the ratio of coalition size to number of competitors. By transitivity, i therefore maximizes her
utility in the same way when choosing among any number of such coalitions.

This clean result unfortunately does not hold, as we will see below, if only one of the two coalitions has
competitors. Intuitively, if one coalition lacks competitors, then i still has a chance of getting her top choice
when that coalition is picked, regardless of whether she is in that coalition, and the odds of this happening
depend on the size of that coalition.

Lemma 5. For an agent i choosing among coalitions only some of which have competitors, i maximizes her

expected utility by seeking the highest ratio of coalition size to number of competitors after i joins |c|+1
|Mi∩c|+1

but with an incentive to avoid coalitions without competitors equal to |c|
|Mi| , assuming no other agents switch

coalitions.

Proof. Using the same expression for the change in i’s utility as in Lemma 4, if Mi∩c1\i 6= ∅ and Mi∩c2 = ∅,
i.e., i is considering switching from a coalition with competitors to one without, i should only switch if

(|c2|+ 1)|Mi ∩ c1| − |c1|
n|Mi ∩ c1|

− |c2|
n|Mi|

≥ 0

|c2||Mi||Mi ∩ c1|+ |Mi||Mi ∩ c1| − |c1||Mi| − |c2||Mi ∩ c1| ≥ 0

|c2| ≥
|c1||Mi| − |Mi||Mi ∩ c1|
|Mi||Mi ∩ c1| − |Mi ∩ c1|

or more intuitively, recalling |Mi ∩ c2| = 0,

|c2|+ 1− |c1|
|Mi ∩ c1|

− |c2|
|Mi|

≥ 0

|c2|+ 1

|Mi ∩ c2|+ 1
≥ |c1|
|Mi ∩ c1|

+
|c2|
|Mi|
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So in essence we still care about the ratio of coalition size to number of competitors, but c1 gets a benefit.
Specifically, if i stays with c1, i still has a 1/|Mi| chance of winning if c2 is chosen as well as a 1/|Mi ∩ c1|
chance if c1 is chosen, whereas if i switches she has a 1/|M1 ∩ c2| + 1 = 1 chance of winning if c2 is chosen
but no chance if c1 is. On the other hand, if Mi ∩ c1\i = ∅ and Mi ∩ c2 6= ∅, i.e., only c2 has competitors,
we should just get the reverse of the above equation. But as a sanity check, i should switch if

|c2|+ 1− |c1|(|Mi ∩ c2|+ 1)

n(|Mi ∩ c2|+ 1)
+
|c1| − 1

n|Mi|
≥ 0

|c2||Mi|+ |Mi| − |c1||Mi||Mi ∩ c2| − |c1||Mi|+ (|Mi ∩ c2|+ 1)(|c1| − 1) ≥ 0

or more intuitively, recalling |Mi ∩ c1| = 1,

|c2|+ 1

|Mi ∩ c2|+ 1
− |c1|+

|c1| − 1

|Mi|
≥ 0

|c2|+ 1

|Mi ∩ c2|+ 1
+
|c1| − 1

|Mi|
≥ |c1|
|Mi ∩ c1|

which does indeed match the previous inequality. Again, we care about the ratio of coalition size to number
of competitors, but this time c2 gets a benefit. Specifically, if i switches to c2, i still has a 1/|Mi| chance of
winning if c1 is chose as well as a 1/|Mi ∩ c2|+ 1 if c2 is, whereas if i stays she has a 1/|M1 ∩ c1| = 1 chance
of winning if c1 is chosen but no chance if c2 is.

Thus for any pair of coalitions where exactly one has competitors, i maximizes her utility by maximizing
the ratio of coalition size to number of competitors but with a benefit of coalition size over |Mi| to avoiding
the coalition without competitors. By transitivity, i therefore maximizes her utility in the same way when
choosing among any number of such coalitions.

Note that for the specific case where c1 is the coalition with just i, it’s always better for i to switch to
c2; if c2 has no competitors then i should switch into the larger coalition, and if it does have competitors

then the above inequality reduces to |c2|+1
|Mi∩c2|+1 ≥ 1 which is always true.

Now we can reason about Nash equilibria in the free coalition formation game; a coalition structure is a
Nash equilibrium (i.e., produced by a strategy profile which is a Nash equilibrium) if no agent would strictly
benefit by switching to another coalition. The conditions under which agents would benefit by switching are
detailed above. For simplicity, we will assume agents i such that |Mi| = 1 don’t join any coalitions, since
they get their top choice regardless of the coalition structure. We will therefore ignore these agents in the
subsequent characterization of equilibria.

Clearly there can be many possible Nash equilibria. The coalition of everyone is an equilibrium, since
as we noted above, it’s always better for an agent to be in a coalition with others than to be on her own.
However, it’s also an equilibrium to have any number of coalitions with identical top-choice profiles, where
every top choice is represented multiple times per coalition, since if any agent switched they would end up
in a coalition with a worse size to competitors ratio.

Thus, we cannot give a clean description of all Nash equilibria. However, we will give one straightforward
necessary condition (“top choice profile containment”), and then a less straightforward set of sufficient
conditions, for a coalition structure to be an equilibrium.

Theorem 4.1. If a coalition structure with coalitions |c1| ≤ |c2| ≤ · · · ≤ |ck| is a Nash equilibrium, it must
obey top choice profile containment. That is, for all ` ∈ {1, . . . , k − 1}, the top-choice profile of c` must be
contained in the top-choice profile of c`+1. Equivalently, for any agent i ∈ c`, |Mi ∩ c`| ≤ |Mi ∩ c`+1|.

Proof. Assume to the contrary that for some coalition c` with agent i, we had |Mi ∩ c`| > |Mi ∩ c`+1|.
Since |c`| ≤ |c`+1|, if i switched she would be in a strictly larger coalition with no more competitors than
before. Per the conditions above, if c` and c`+1 both or neither have competitors, this would strictly improve
i’s utility by increasing the size to competitors ratio. Otherwise, c` must have competitors and c`+1 must

not, so i would strictly improve her utility by switching if |c`+1|+1
|Mi∩c`+1|+1 = |c`+1| + 1 is strictly larger than
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|c`|
|Mi∩c`| + |c`+1|

|Mi| . Since c` has competitors and |c`| ≤ |c`+1|,

|c`|
|Mi ∩ c`|

+
|c`+1|
|Mi|

≤ |c`|
2

+
|c`+1|

2

<
|c`+1|+ 1

2
+
|c`+1|

2
= |c`+1|+ 1

Thus in any circumstances, switching would strictly improve i’s utility, which contradicts that the initial
coalition structure was a Nash equilibrium. Thus no coalition structure can be an equilibrium unless it obeys
top choice profile containment.

The containment requirement illuminates some other interesting conditions for Nash equilibria.

Corollary 4.1.1. If two coalitions in an equilibrium are the same size, they must be identical in terms of
top choice profile.

Corollary 4.1.2. If any Mi is contained entirely in one coalition, it must be the strictly largest coalition.

Corollary 4.1.3. k, the number of coalitions, is at most equal to the largest number of agents with the same
top choice.

Proof. c1 must contain at least one agent with some top choice t, but by containment, so must all the
coalitions in the chain. Thus the number of coalitions is at most the number of agents with top choice t,
which is at most equal to the largest number of agents with the same top choice.

Note that this limit on k is achievable, for instance, if all agents have the same top choice. In that case,
all coalition structures are Nash equilibria, because agents always have utility 1/n since they only get their
top choice if they are chosen as the dictator. Thus each agent being in her own coalition is an equilibrium,
and k = n = the number of agents sharing the same top choice.

However, note that the containment requirement is not sufficient to guarantee that the structure is an
equilibrium. For instance, if some Mi ( ck, i could strictly benefit from switching to ck−1 if |ck−1| + 1 >
|ck|+|ck−1|
|Mi| . As a specific example, this inequality holds for the coalition structure where c1 has top-choice

profile {1} and c2 has {1, 2, 2, 2}, so this structure is not an equilibrium even though it obeys the containment
rule.

We can give an inelegant characterization of the necessary and sufficient conditions for an equilibrium.
We will start with the containment rule,

∀` ∈ {1, . . . , k − 1} ∀i ∈ c` |Mi ∩ c`| ≤ |Mi ∩ c`+1| (1)

and figure out what other conditions must be met to guarantee that no agent would benefit from switching.
First, consider an agent i who is the only agent of Mi in c(i). The containment rule guarantees i will not

want to switch to a coalition with no members of Mi, since it implies all such coalitions are strictly smaller
and thus switching would not increase the size of the coalition i belongs to. However, it must also be the
case that i would not benefit from switching to a coalition containing at least one member of Mi. Thus, if
c`−1 ∩Mi = ∅ and c` ∩Mi = {i},

∀m > `
|cm|+ 1

|Mi ∩ cm|+ 1
≤ |c`| −

|c`| − 1

|Mi|
(2)

This is necessary because otherwise i would benefit from switching to some larger coalition. It is also
sufficient to guarantee that no other agent j ∈Mi with no competitors in their coalition c(j) would benefit
from switching to a coalition with competitors. This is because |c(j)| ≥ |c`| by definition. Thus j wouldn’t

strictly benefit by switching to c` because |c`|+1
|Mi∩c`|+1 = |c`|+1

2 ≤ |c(j)|+1
2 ≤ |c(j)| − |c(j)|−1|Mi| . Nor would j

strictly benefit by switching to cm for m > ` because |cm|+1
|Mi∩cm|+1 ≤ |c`| −

|c`|−1
|Mi| ≤ |c(j)| −

|c(j)|−1
|Mi| .

Finally, we need to ensure that no agent i with competitors in c(i) would benefit from switching. If ` is
the highest index such that c` ∩Mi = ∅ and `′ is the highest index such that c′` ∩Mi ≤ 1,

∀m > `′ |c`|+ 1 ≤ |cm|
|Mi ∩ cm|

+
|c`|
|Mi|

(3)
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This must hold because otherwise some i ∈ cm would benefit from switching to c`. However, it also ensures
no agent i with competitors in c(i) would strictly benefit from switching to a coalition c without competitors,
since by definition |c| ≤ |c`| and thus the desired inequality holds for any pair of coalitions, one with no
members of Mi and one with multiple.

It must also be the case that no i with competitors in c(i) would benefit from switching to a coalition
with competitors. Thus for all c` 6= cm with |c` ∩Mi| ≥ 2 and |cm ∩Mi| ≥ 1,

|cm|+ 1

|Mi ∩ cm|+ 1
≤ |c`|
|Mi ∩ c`|

(4)

Thus, Equations 1 - 4 constitute necessary and sufficient conditions for a coalition structure to be a Nash
equilibrium.

4.3 Exclusive coalition formation

We will now study optimal behavior using the Exclusive Coalition Formation Game introduced in Section 3.4.
However, in this setting, it actually matters what method we use for voting on new coalition members. Since
agents now have knowledge of preferences, we no longer expect the vote to be unanimous.

4.3.1 Strategies for exclusive coalition formation

We have already calculated above the conditions under which an agent would want to switch coalitions.
However, for the exclusive coalition formation game, we also want to know when an agent would accept a
new member of the coalition.

Lemma 6. Agent i always benefits by adding j /∈Mi to c(i) (although not strictly if Mi ⊂ c(i)).

Proof. Consider the difference in agent i’s utility if j joins c(i) versus if he remains in c(j):

(|c(i)|+ 1)|Mi|+ βc(i)(i)|Mi ∩ c(i)|(n− |c(i)| − 1)

n|Mi||Mi ∩ c(i)|
−
|c(i)||Mi|+ βc(j)(i)|Mi ∩ c(i)|(n− |c(i)|)

n|Mi||Mi ∩ c(i)|

=
1

n|Mi ∩ c(i)|
+

(∑
c6=c(i)∪{j} |c| if Mi ∩ c = ∅

)
−
(∑

c 6=c(i) |c| if Mi ∩ c = ∅
)

n|Mi|

=
1

n|Mi ∩ c(i)|
+

(|c(j)| − 1 if Mi ∩ c(j)\j = ∅)− (|c(j)| if Mi ∩ c(j) = ∅)
n|Mi|

=
1

n|Mi ∩ c(i)|
+
−1 if Mi ∩ c(j) = ∅

n|Mi|
≥ 0

Thus it is always advantageous to add an agent with a different top choice to your coalition. (Note that the
above expression equals zero if and only if |Mi ∩ c(i)| = |Mi|.) This makes sense because agents only care
about being the first among those with the same top preference (and if all of Mi is in the same coalition,
they always have a 1/|Mi| chance of winning).

Lemma 7. Agent i benefits by adding j ∈Mi to c(i) if and only if Mi∩c(j) = {j} and |c(i)|+1
|Mi∩c(i)|+1 + |c(j)|−1|Mi| ≥

|c(i)|
|Mi∩c(i)| (or if c(i) ⊂Mi).
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Proof. Consider the difference in agent i’s utility if j ∈Mi remains in c(j) versus if he joins c(i):

|c(i)||Mi|+ βc(j)(i)|Mi ∩ c(i)|(n− |c(i)|)
n|Mi||Mi ∩ c(i)|

−
(|c(i)|+ 1)|Mi|+ βc(i)(i)(|Mi ∩ c(i)|+ 1)(n− |c(i)| − 1)

n|Mi|(|Mi ∩ c(i)|+ 1)

=
(|Mi ∩ c(i)|+ 1)|c(i)| − |Mi ∩ c(i)|(|c(i) + 1|)

n|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)
+
βc(j)(i)(n− |c(i)|)− βc(i)(n− |c(i)| − 1)

n|Mi|

=
|c(i)| − |Mi ∩ c(i)|

n|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)
+

(∑
c6=c(i) |c| if Mi ∩ c = ∅

)
−
(∑

c6=c(i)∪{j} |c| if Mi ∩ c = ∅
)

n|Mi|

=
|c(i)| − |Mi ∩ c(i)|

n|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)
+

(|c(j)| if Mi ∩ c(j) = ∅)− (|c(j)| − 1 if Mi ∩ c(j)\j = ∅)
n|Mi|

=
|c(i)| − |Mi ∩ c(i)|

n|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)
− |c(j)| − 1 if Mi ∩ c(j)\j = ∅

n|Mi|

Clearly if Mi ∩ c(j)\j 6= ∅, then this expression is non-negative, and i suffers by adding j to c(i) (though if
|c(i)| = |Mi ∩ c(i)|, this expression is less than or equal to zero in any case). That is to say, it’s always bad
to add someone sharing your top choice, except possibly if adding them would remove the last competitor
from another coalition. In that case,

=
|c(i)| − |Mi ∩ c(i)|

n|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)
− |c(j)| − 1

n|Mi|

=
|c(i)||Mi| − |Mi||Mi ∩ c(i)| − |c(j)||Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1) + |Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

n|Mi||Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

so i benefits by adding j if j is the only member of c(j) sharing i’s top choice and

0 ≥ |c(i)||Mi| − |Mi||Mi ∩ c(i)| − |c(j)||Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1) + |Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

|c(j)| ≥ 1 +
|Mi| (|c(i)| − |Mi ∩ c(i)|)
|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

or perhaps more intuitively,

0 ≥ |c(i)|+ |c(i)||Mi ∩ c(i)|
|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

− |Mi ∩ c(i)|+ |c(i)||Mi ∩ c(i)|
|Mi ∩ c(i)|(|Mi ∩ c(i)|+ 1)

− |c(j)| − 1

|Mi|
|c(i)|+ 1

|Mi ∩ c(i)|+ 1
+
|c(j)| − 1

|Mi|
≥ |c(i)|
|Mi ∩ c(i)|

That is, i would want j ∈ Mi to join c(i) if and only if j is the only member of c(j) sharing i’s top choice,
and the advantages to i of the i/|Mi| chance of winning if c(j)\j is chosen outweighs the disadvantage of
adding j.

Theorem 4.2. Under the voting rule where an agent j is accepted into coalition c unless the utiltiy of every
member of c would decrease, the individually stable outcomes of the Exclusive Coalition Formation Game are
identical to the equilibria of the Free Coalition Formation Game.

Proof. Under this voting rule, no request is ever denied. Since agents always benefit by adding a new member
not sharing their top choice, the only way a request could be denied is if all members of the voting coalition
c(i) share the same top choice as the requester j. However, we saw above that if c(i) ⊂ Mi then all agents
are neutral to adding j, so they would still accept the request to join.

Recall that a coalition structure is an equilibrium of the Free Coalition Formation Game if and only if
no agent would benefit by switching to another coalition. Also, a coalition structure is individually stable
in the Exclusive Coalition Formation Game if and only if no agent would benefit by switching to another
coalition and that coalition would accept them. However, since coalitions always accept requests under this
rule, the two conditions are identical, and equilibria of the Free Coalition Formation Game are identical to
individually stable structures in the Exclusive Coalition Formation Game.

Of course, we would expect to see fairly different results for other voting rules (e.g., majority rule or
unanimity to accept), since not all agents in a coalition would vote the same way.
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5 Coalition formation with knowledge of preferences

Reasoning about full preferences with complete information is incredibly difficult. Even calculating expected
utility of agent i given coalition structure C at least naively requires calculating the results for all possible
orderings. This is because even a single swap in the ordering can have large cascading effects on the
resulting assignments. For example consider the following preference profiles: {R1 = (x1, x2, x3, x4), R2 =
(x2, x1, x3, x4), R3 = (x2, x3, x4, x1, ), R4 = (x3, x4, x1, x2)}, if the agents go in order (3,2,4,1) we end up
with the following mapping of resources to agents {x2 : 3; x1 : 2; x3 : 4; x4 : 1}, note that agent 1
received her last choice. Now if we make a single swap and go in order (2,3,4,1) then the resulting map is
{x2 : 2; x3 : 3; x4 : 4; x1 : 1}, which resulted in agent 1 receiving her first choice.

Further, even if we could calculate the expected utility for an agent given a structure, we are left with
a difficult non-convex optimization problem to determine the optimal coalition structure for a given player.
Suppose we have a large number of players and we are trying to optimize the results for a given player i
with Ri = (x1, x2, ...xn). Suppose i only has utility for her first choice. This example is not equivalent to
the petulant child model, as other agents may have utility beyond their first choice, and regardless of utility,
they are guaranteed to be assigned. Finally, suppose that all other agents rank x1 third in their list.

When i’s coalition has size at most two, all other agents look the same: they all increase the chance her
coalition will be chosen first without increasing the chance that a member of her coalition will take her first
choice. However, as the size of the coalition grows, i must reason about which agents are least likely to end
up taking her first choice. This, in turn, depends on how likely it is that those agents first or second choices
are available on their turn. The result is a complex web of probabilistic dependencies, potentially involving
cascades of the sort described in the beginning of this section.

Clearly this reasoning is complicated even when i only cares about her top choice, and with more general
utility functions we would only expect it to become more complex.

6 Conclusion

We have examined a number of models of CFSD and shown that these games are not hedonic, as each
agent’s utility is dependent on the global coalition structure and not just the membership of her coalition.
We explored the necessary conditions for stability. We proved that, given a few assumptions about rational
play, stable coalition structures will emerge in the zero-knowledge variants of the game. We also identified
key elements of the petulant child model, such as the ratio of coalition size to number of competitors, and
top choice profile containment.

6.1 Open Questions

In the version of the game where agents do not know each other’s preferences, we assumed that the utility
of agent i was Ui(s(i)) = n− s(i). How does optimal behavior change if Ui is in some other form? Suppose
all preferences are drawn from some distribution: what happens when agents do not know each other’s
preferences, but do know the distribution from which they are drawn? For agent i, is the size of her optimal
coalition based on the probability of other agents having similar preferences? Another interesting avenue
could be to vary how the dictator is selected: what happens when the dictator is drawn from a known
distribution that is not uniform? In that model, agents who are more likely to be dictator have more value
as coalition members. How does this affect the strategies of individual agents?

Given the hardness results in other combinatorial games [4, 5], we wonder if CFSD with full knowledge
is similarly difficult. However, reducing any such games to CFSD is difficult because it is not clear how one
can express arbitrary utility functions in coalition structures. This is because an agent’s utility does not
depend directly on the coalition structure; it depends on the results of the serial dictatorship. The coalition
structure simply has side effects on the probability distribution that defines an agent’s utility, which as we
have explained, are hard to analyze.

Although we proved the existence of Nash equilibria in the petulant child model, the following questions
remain: Will all games arrive at a Nash equilibrium if agents are allowed to switch their strategies indefinitely?
Given a voting rule, is it possible for cycles between coalition structures to arise in the exclusive version of
that model? If so, is there any voting rule which guarantees eventual convergence of strategies? We assumed
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agents are bound to the preferences they report during coalition formation; if this were not the case, when
do agents have incentive to misrepresent their preferences?
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