Incentives in Computer Science (COMS 4995-6): Exercise Set #4

Due by Noon on Wednesday, February 19, 2020

Instructions:

- (1) You can work individually or in a pair. If you work in a pair, the two of you should submit a single write-up.
- (2) Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com to either login or create a new account. Use the course code MKRKK6 to register for COMS 4995-6. Only one person needs to submit the assignment. When submitting, please remember to add your partner's name (if any) in Gradescope.
- (3) Please type your solutions if possible. We encourage you to use the LaTeX template provided on the course home page.
- (4) Write convincingly but not excessively. You should be able to fit all of your solutions into 2–3 pages, if not less.
- (5) Except where otherwise noted, you may refer to the course lecture notes and the specific supplementary readings listed on the course Web page *only*.
- (6) You can discuss the exercises verbally at a high level with other groups. And of course, you are encouraged to contact the course staff (via Piazza or office hours) for additional help.
- (7) If you discuss solution approaches with anyone outside of your group, you must list their names on the front page of your write-up.
- (8) Refer to the course Web site for the late day policy.

Exercise 20

Consider a single-item auction with at least three bidders. Prove that awarding the item to the highest bidder, at a price equal to the third-highest bid, yields an auction that is *not* truthful.

Exercise 21

Prove that for every false bid $b_i \neq v_i$ by a bidder in a second-price auction, there exist bids $\{b_j\}_{j\neq i}$ by the other bidders such that *i*'s utility when bidding b_i is strictly less than when bidding v_i .

Exercise 22

Suppose there are k identical copies of an item and n > k bidders. Suppose also that each bidder can receive at most one item. What is the analog of the second-price auction? Prove that your auction is truthful.

Exercise 23

Exhibit an equilibrium of a GSP sponsored search auction that is not social welfare-maximizing. In other words, come up with bidder valuations v_1, \ldots, v_n and (non-welfare-maximizing) bids b_1, \ldots, b_n so that, for each bidder *i*, no bid b'_i would give the bidder a strictly higher utility that it receives when bidding b_i (holding other bidders' bids fixed).

Exercise 24

Consider extending the sponsored search auction model with click-through rates α_{ij} that can depend arbitrarily on the advertiser *i* and slot *j*.¹ Assume that, for each bidder *i*, higher slots are better: $\alpha_{i1} \ge \alpha_{i2} \ge \cdots \ge \alpha_{ik}$.

Consider the following greedy algorithm:

- 1. For $j = 1, 2, \ldots, k$:
 - (a) Among all bidders not yet assigned to a slot, assign to slot j the bidder i with the highest value of $v_i \alpha_{ij}$.

Show by example that (assuming truthful bids) this greedy assignment does not always maximize the social welfare. (In this context, the social welfare of an assignment is $\sum_{i=1}^{k} \alpha_{is(i)} v_i$, where s(i) is the slot to which i is assigned, and where we interpret $\alpha_{is(i)} = 0$ if i does not receive a slot.)

Exercise 25

Show that the general VCG mechanism is "individually rational," meaning that a truthful bidder is guaranteed nonnegative utility.²

[Hint: prove that $p_i \leq b_i(\omega^*)$, where p_i is the VCG payment by bidder i, ω^* is the outcome chosen by the mechanism, and $b_i(\omega^*)$ is the bid by bidder i for the outcome ω^* .]

 $^{^{1}}$ This is related to the problem that the Facebook ad auction faces, with different advertisers bidding on different events and therefore having different CTRs.

²You can assume that all bids are nonnegative.