
COMS 4995 (Randomized Algorithms): Problem Set #2

Due by 11:59 PM on Wednesday, October 9, 2019

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group.

(2) Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account. Use the course code 9D6V5E to register for this class. Only
one group member needs to submit the assignment. When submitting, please remember to add all
group member names in Gradescope. See the course Web site for detailed instructions.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the course home page.

(4) Write convincingly but not excessively.

(5) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (3), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

(6) Except where otherwise noted, you may refer to your lecture notes and the specific supplementary
readings listed on the course Web page only. You can also review any relevant materials from your
undergraduate algorithms course. If you do use any approved sources, make you sure you cite them
appropriately, and make sure that all your words are your own.

(7) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

(9) Refer to the course Web page for the late day policy and the School of Engineering honor code.

Problem 7

(14 points) The goal of this problem is to devise a two-level hashing scheme that has excellent worst-case
performance (rather than just good average-case performance over the choice of hash function). To make
this doable, we will assume that the data set S to be hashed is known in advance.

(a) (4 points) Let H be a universal family of hash functions (see Exercise #11), mapping a large set U
of items to the n buckets {0, 1, 2, . . . , n − 1}. Let S ⊆ U contain m elements. Suppose that a hash
function h is chosen uniformly at random from H and used to hash all of the elements of S. Prove that
the expected number of collisions — the number of unordered pairs x, y ∈ S of distinct elements with
h(x) = h(y) — is less than m2/2n. (Note the expectation here is over the random choice of h ∈ H.)

(b) (4 points) Explain how (a) and Markov’s inequality (Exercise #3) lead to a good randomized algorithm
for finding a hash function h ∈ H that hashes all of S while suffering less than m2/n collisions. (Your
algorithm should be Las Vegas (see Problem #5) and have expected running time polynomial in m
and n. You can assume that a random hash function can be chosen in polynomial time, and that every
hash function can be evaluated in polynomial time.) As a special case, what does this imply when we
are willing to tolerate a quadratic blow-up in space (taking n = m2)?

1



(c) (6 points) Here’s how we retain constant-time worst-case search performance while using only O(m)
space. We first pick an “outer” hash table with m buckets. By part (b), we can compute efficiently a
hash function h∗ that hashes all of S with a total of at most m collisions (note that when n = m we
have m2/n = m); fix such a hash function for the rest of the problem.

Now, for each bucket i ∈ {1, 2, . . . ,m} of the outer hash table, let Ai denote the elements of S that
h∗ hashes to i. Denote |Ai| by ai. For each i, we allocate an “inner” hash table with a2i buckets.
Again, part (b) implies that we can compute efficiently a hash function hi : U → {0, 1, 2, . . . , a2i − 1}
so that no elements of Ai collide in this inner hash table. Note that this two-level scheme guarantees
constant-time lookup: given an element x, we first compute the hash value h∗(x), and then fetch the
(unique) element in the bucket hh∗(x)(x) of the inner hash table corresponding to h∗(x). (Unsuccessful
searches are similarly easy.) It remains to prove that this scheme requires only linear space.

Prove that the total space

m+

m∑
i=1

a2i

required by the two-level scheme is O(m). Here “space” refers to the sum of the array lengths of all of
the hash tables used (e.g., we’re ignoring the number of bits needed to actually describe each object
of S).

Problem 8

(15 points) The point of this problem is to outline a simple construction of a small family of 4-wise independent
hash functions, as required by the AMS F2 streaming algorithm (Lecture #6). Let n = |U | be the universe
size, let F be a finite field with 2r elements, with r ∈ N and n < |F| ≤ 2n.1 Associate the elements of U
with n distinct elements from F (arbitrarily). The key property we need of fields is polynomial interpolation:
given target points (x1, y1), . . . , (xd, yd) with all xi’s and yi’s in F (and with the xi’s distinct), there is a
unique degree-(d− 1) polynomial p(x) (with coefficients in F) that satisfies p(xi) = yi for all i = 1, 2, . . . , d.2

(a) (5 points) As a warm up, for a pair (a, b) ∈ F2 of coefficients, define

hab(x) = ax+ b

for x ∈ U , where all operations are in the field F. Prove that the family H = {hab : a, b ∈ F2} is
pairwise independent, meaning that for every distinct pair x, y ∈ U and every image z, w ∈ F,

Pr[hab(x) = z and hab(y) = w] = Pr[hab(x) = z] ·Pr[hab(y) = w] =
1

|F|2
. (1)

(b) (5 points) For a 4-tuple (a, b, c, d) ∈ F4 of coefficients, define

habcd(x) = ax3 + bx2 + cx+ d,

where all operations take place in the field F. Let H denote the set of all |F|4 such functions. Prove that
H is a 4-wise independent family, meaning that the analog of (1) with four values (inputs x1, x2, x3, x4
and outputs y1, y2, y3, y4) holds with “1/|F|2” replaced by “1/|F|4.”

1Recall that in a field you can add, subtract, multiply, and divide by non-zero numbers. The real and rational numbers are
familiar examples. (The integers are not an example, because they are not closed under division by non-zero elements.) There
are also fields with a finite number of elements. For example, if p is prime, then the set {0, 1, 2, . . . , p − 1} forms a field with
the operations defined by modular arithmetic; division is possible because each non-zero element has a multiplicative inverse.
(E.g., if p = 7, 2−1 = 4 (since 2 · 4 ≡ 1 modulo 7), 3−1 = 5, 4−1 = 2, 5−1 = 3, and 6−1 = 6.) It turns out that for every prime
power pr (and only for these), there exists a unique finite field (up to relabeling of the elements) with pr elements.

2For example, the proof using Lagrange polynomials works for any field.

2



(c) (5 points) Define gabcd(x) as +1 if habcd(x) is an even and -1 otherwise.3 Prove that G = {gabcd :
a, b, c, d ∈ F} is 4-wise independent, meaning that for all distinct x1, x2, x3, x4 ∈ U and all z1, z2, z3, z4 ∈
{±1},

Prg∈G [g(xi) = zi for i = 1, 2, 3, 4] =
1

16
.

[Note: describing a function of H or G requires only O(log n) bits, for the four coefficients a, b, c, d ∈ F.
The evaluation of such a hash function can also be carried out with a logarithmic amount of space.]

Problem 9

(25 points) Recall the heavy hitters setup from Lecture #5. There is a known universe U of size n, and a
data stream of m elements x1, . . . , xm that arrive one-by-one. Let fj denote the number of occurrences of
an element j ∈ U in the stream. The goal in this problem is to compute estimates of all the fj ’s while using
a small amount of space.4 Consider the following variation of the Count-Min-Sketch algorithm from Lecture
#5, where instead of always incrementing a counter on an insert, we increment or decrement a counter, with
the sign determined by a second hash function:5

1. Initialize an array A of b counters to 0 (where b is a parameter to be set later).

2. Let h be a random oracle from U to {1, 2, . . . , b}.

3. Let g be a random oracle from U to {−1,+1}.

4. For i = 1, 2, . . . ,m:

(a) A[h(xi)] := A[h(xi)] + g(xi).

After the stream has been processed, the data structure’s estimate Xj of the frequency of an element j ∈ U
is defined as g(j) times the final value of A[h(j)].

(a) (5 points) For every j ∈ U , prove that Xj is an unbiased estimator (no matter what b is):

E[Xj ] = fj .

(The expectation is over the choice of the random oracles h and g.)

(b) (5 points) For every j ∈ U , prove that

Var[Xj ] ≤
F2

b
,

where F2 =
∑

j∈U f
2
j denotes the second frequency moment.

(c) (5 points) Choose b (as a function of the user-specified δ and ε) so that the following guarantee holds:
for every j ∈ U , with probability at least 1− δ,

|Xj − fj | ≤ ε · ‖f‖2,

where ‖x‖2 =
√∑

i x
2
i denotes the `2-norm of a vector and f denotes the vector of frequencies (i.e.,

the fj ’s).

(d) (3 points) The analysis in parts (a)–(c) assumed that the hash functions were random oracles. Prove
that the exact same analysis holds with much weaker assumptions on the hash functions.

(e) (3 points) What is the space usage of your algorithm? (Assume that each hash function can be stored
and evaluated in O(log n) space.)

3Don’t worry about the exact definition of “even” and “odd” elements of F; you can assume that there is the same number
of each.

4One can keep track of candidate heavy hitters along the way, if desired; see the notes for Lecture #5 for details.
5The hope is that the random signs cause helpful cancellations when different elements collide.

3



(f) (4 points) Compare the space and correctness guarantees of the Count-Min-Sketch from Lecture #5
and the variant in this problem. For each of the two solutions, propose a situation (e.g. properties of
the data stream, or requirements of the motivating heavy hitters application, etc.) where that solution
would be preferable to the other.

Problem 10

(16 points) As mentioned in Lecture #6, it is trivial to compute F1 (i.e., to count) using ≈ log2m space, where
m is the number of objects being counted. But what if we only care about about counting approximately
and probabilistically, up to a (1± ε) factor with probability at least 1− δ? Here’s a way to reduce the space
to O(ε−2δ−1 log logm).6 The basic idea is to count (probabilistically) logm rather than m itself, and then
aggregate many independent estimates (as in our analysis of the AMS algorithm for F2 estimation).

(a) (4 points) The basic estimator is the following. Initialize Z = 0. When a new object arrives, increment
Z with probability 2−Z (else leave it unchanged). At the end, output X = 2Z − 1.

Prove that the estimator is unbiased, that E[X] = m.

[Hint: prove by induction on i that, after seeing i objects, E
[
2Z
]

= i+ 1.]

(b) (4 points) Prove that E
[
22Z
]

= 3
2m

2 + 3
2m+ 1.

[Hint: again, induction on i.]

(c) (4 points) Conclude that Var[X] = m(m−1)
2 .

(d) (4 points) Use the average of several independent estimators and Chebyshev’s inequality (Exercise
#14) to prove that a probabilistic (1± ε)-approximate counter requires only O(ε−2δ−1 log logm) space
(where δ upper bounds the probability of failing to compute a (1± ε)-approximation).

Problem 11

(15 points) This problem concerns the same data stream model studied in Problem #9, but with the goal
of computing the number of distinct elements in the stream. This quantity can be thought of as the 0th
frequency moment F0, with each element j ∈ U contributing either 1 or 0 to it (depending on whether fj ≥ 1
or fj = 0).

Like in Lecture #5, the plan is to aggregate a number of independent estimators. To keep things simple,
we’ll assume we have a random oracle h mapping each element j ∈ U independently and uniformly to the
real unit interval [0, 1]. (The same idea can be translated to reasonably practical hash functions with discrete
range, but the details get a bit annoying.) Given such an h, here is the basic estimator, which tracks the
minimum hash value seen so far:7

1. Initialize Z := 1.

2. Let h be a random oracle from U to [0, 1].

3. For i = 1, 2, . . . ,m:

(a) Z := min{Z, h(xi)}.

4. Return X := 1
Z − 1.

6This subroutine can be used to reduce the dependence on m in the AMS F2 estimation algorithm from logm to log logm.
7Intuition: if there are k distinct elements in the stream, then k distinct hash function values are observed. Under the random

oracle assumption, these hash values are i.i.d. draws from the uniform distribution [0, 1]. The k expected order statistics split
the interval [0, 1] into k + 1 equal-length subintervals. (E.g., the expected minimum and maximum of two i.i.d. draws from the
uniform distribution on [0, 1] are 1

3
and 2

3
, respectively.) Thus, F0 = k implies that the expected minimum is 1/(k + 1); the

estimator inverts this relationship.

4



(a) (5 points) Prove that

E[Z] =
1

F0 + 1
.

[Hint: you might find the identity E[Z] =
∫∞
0

Pr[Z ≥ t] dt useful.]

(b) (5 points) Prove that

E
[
Z2
]

=
2

(F0 + 1)(F0 + 2)

and hence Var[Z] ≤ 1
(F0+1)2 .

(c) (5 points) Extend the basic estimator above using averages of repeated trials (performed in parallel
in a single pass over the data stream), to obtain an estimator Y with the following guarantee (for
user-specified ε, δ ∈ (0, 1)): with probability at least 1− δ,

|Y − F0| ≤ ε · F0.

Be sure to specify precisely how many trials you need as a function of ε and δ.

Problem 12

(15 points) Recall from Lecture #7 that we proved the following (the “Leftover Hash Lemma”). Suppose X
is a random variable with collision probability cp(X) at most 1/K. Suppose H is a universal family of hash
functions (from the range of X to the range {0, 1, 2, . . . ,M − 1}), and h is chosen uniformly at random from
H. Then the statistical distance between the joint distribution of (h, h(X)) and of the uniform distribution
(on H× {0, 1, 2, . . . ,M − 1}) is at most 1

2

√
M/K.

For this problem, assume that you have a sequence X1, . . . , XT of random variables, with the property
that for every i and fixed values of X1, . . . , Xi−1, the (conditional) collision probability of Xi is at most 1/K
(i.e., a “block source with entropy log2K”). Prove that the statistical distance between the joint distribution
of (h, h(X1), . . . , h(XT )) and of the uniform distribution on H× [M ]T is at most T

2

√
M/K.

[Hint: One high-level approach is to prove, by downward induction on i, a bound of (T−i)
2

√
M/K on

the statistical distance between (h, h(Xi+1), . . . , h(XT )) and the uniform distribution for every fixed value
of X1, . . . , Xi. The increase in statistical distance in the inductive step should come from the Triangle
Inequality.]

5


