
COMS 4995 (Randomized Algorithms): Problem Set #1

Due by 11:59 PM on Wednesday, September 25, 2019

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group.

(2) Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account. Use the course code 9D6V5E to register for this class. Only
one group member needs to submit the assignment. When submitting, please remember to add all
group member names in Gradescope. See the course Web site for detailed instructions.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the course home page.

(4) Write convincingly but not excessively.

(5) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (3), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

(6) Except where otherwise noted, you may refer to your lecture notes and the specific supplementary
readings listed on the course Web page only. You can also review any relevant materials from your
undergraduate algorithms course. If you do use any approved sources, make you sure you cite them
appropriately, and make sure that all your words are your own.

(7) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

(9) Refer to the course Web page for the late day policy and the School of Engineering honor code.

Problem 1

(15 points) In the weighted independent set (WIS) problem, the input is an undirected graph G = (V,E)
and a nonnegative weight wv ≥ 0 for each vertex v ∈ V . The goal is to output an independent set—a subset
S ⊆ V of vertices that are mutually non-adjacent—with the maximum total weight

∑
v∈S wv.

1 This problem
is NP -hard, so we will consider a polynomial-time heuristic:

1. Order the vertices v1, v2, . . . , vn uniformly at random (out of the n! possible orderings, where n = |V |).

2. S := ∅

3. For i = 1, 2, . . . , n:

(a) If vi is not adjacent to any vertex of S, S := S ∪ {vi}.
1For example, in a clique, only singletons are independent sets. On a path, taking every other vertex produces an independent

set.

1

4. Return S.

Suppose the maximum degree of a vertex of G is ∆ (where the degree of a vertex is its number of neighbors).
Prove that the expected total weight of the independent set returned by the algorithm above is at least 1

∆+1
times the total weight of an optimal (maximum-weight) independent set.

Problem 2

(15 points) In Lecture #2 we gave a 7
8 -approximation algorithm for the MAX 3SAT problem, where every

clause is the OR of three literals corresponding to distinct variables (e.g., ¬x1 ∨ x2 ∨ ¬x3). In this problem
we’ll consider the MAX SAT problem, where each clause is the OR of literals corresponding to any number
of distinct variables (i.e., anywhere from 1 to all n variables).

(a) (4 points) Show that, for every SAT formula, a random assignment satisfies in expectation at least 50%
of the clauses. Give an example of a SAT formula for which no truth assignment satisfies more than
50% of the clauses.

(b) (6 points) Consider a SAT formula that does not contain directly contradictory unit clauses—i.e., that
does not contain both the clauses xi and ¬xi for some variable xi. Give a randomized algorithm that
satisfies, in expectation, at least 60% of the clauses.

[Hint: if a variable appears in a unit clause, bias its assignment appropriately.]

(c) (5 points) Give a randomized algorithm for MAX SAT (with no assumptions about contradictory unit
clauses) that satisfies, in expectation, at least 60% ·OPT clauses, where OPT is the maximum number
of clauses satisfied by any truth assignment. (This does not contradict the second part of (a), since
OPT might be considerably smaller than the number of clauses.)

Problem 3

(18 points) This problem considers two extensions of Karger’s contraction algorithm (Lecture #3), one to
approximate minimum cuts and one to r-way minimum cuts.

(a) (9 points) Let α ≥ 1 be a positive integer. A cut (A,B) of a graph G = (V,E) is α-approximate if
the number of edges crossing it is at most α times that crossing a minimum cut. Prove that for every
fixed positive integer α, every n-vertex graph G has O(n2α) different α-approximate cuts. (The leading
constant suppressed by the big-O notation can have arbitrary dependence on α; that is, we think of α
as a fixed constant while n→∞.)

[Hint: stop the contraction algorithm when 2α+1 vertices remain and then return a uniformly random
cut of the contracted graph. What is the probability that this algorithm outputs a target α-approximate
cut (A,B)?]

(b) (9 points) For a positive integer r ≥ 2, an r-way cut of an undirected graph G = (V,E) is a partition of
the vertex set V into r non-empty subsets A1, A2, . . . , Ar. An edge crosses an r-way cut if its endpoints
lie in two distinct groups of the partition. Extend Karger’s algorithm (and our analysis of it) to give,
for every fixed integer r ≥ 2, a randomized polynomial-time algorithm for computing an r-way cut
with the minimum-possible number of crossing edges. (The running time of your algorithm can be
exponential in r, but should be polynomial in n for every fixed r.) What upper bound does your
analysis imply on the maximum number of minimum r-way cuts in an n-vertex graph?

Problem 4

(15 points) Karger’s randomized minimum cut algorithm is unlikely to fail (i.e., to contract an edge crossing
the desired minimum cut) in its earliest iterations, but it is increasing likely to fail in its later iterations (as

2

the number of vertices decreases). This suggests doing more independent trials of later iterations than of
earlier ones; this is the key idea to speeding up the algorithm.2

Fix an n-vertex graph G = (V,E).

(a) (4 points) Consider running two independent trials of Karger’s contraction algorithm (with a total of
2n− 4 contraction operations between them) and returning the better of the two results. Give a lower
bound on the probability that the algorithm returns a minimum cut.

(b) (6 points) For a parameter k, suppose instead we run n− k contraction iterations to reduce the input
graph G to a k-vertex graph G′. Then, for another parameter `, we make ` copies of G′ and perform
an independent trial of Karger’s contraction algorithm on each (returning the best solution found).
Determine the total number of edge contractions performed by this algorithm and bound from below
the probability that it outputs a minimum cut.

(c) (5 points) Find optimal (or at least near-optimal) values of k and ` that maximize your lower bound on
the probability of finding a minimum cut while using at most 2n− 4 edge contractions. (Your success
probability should be significantly higher than in part (a).)

Problem 5

(20 points) One can classify randomized algorithms for decision problems according to their correctness
properties:

1. Las Vegas, or alternatively zero-sided error. Such an algorithm is correct with probability 1; only its
running time is random. (Example: QuickSort.)

2. Monte Carlo with one-sided error on “yes” instances. Such an algorithm is always correct on “no”
instances (i.e., no false positives) but errs with some probability on “yes” instances (i.e., can have false
negatives). (Example: Karger’s contraction algorithm for the problem “is there a cut with at most k
crossing edges”?)

3. Monte Carlo with one-sided error on “no” instances. Such an algorithm is always correct on “yes”
instances (i.e., no false negatives) but errs with some probability on “no” instances (i.e., can have false
positives). (Example: the Miller-Rabin algorithm, for the problem “is the given integer prime”?)

4. Monte Carlo with two-sided error. Such an algorithm can err with some probability on both “yes” and
“no” instances. (We haven’t seen any examples yet in lecture, but there are many natural ones, for
example for sampling/estimation problems.)

These four types of algorithms give rise to four different complexity classes, each a formalization of “problems
solvable by a randomized algorithm in polynomial time.” Recall from your study of NP-completeness that a
decision problem is specified by a language L ⊆ {0, 1}∗. Inputs x that belong to L are called “yes instances,”
those not in L are called “no instances.”

1. (Polynomial-time Las Vegas algorithms.) A decision problem belongs to the complexity class ZPP if
there is an algorithm A with expected running time polynomial in the input size and with

Pr[A is correct on x] = 1 if x ∈ L
Pr[A is correct on x] = 1 if x /∈ L.

2. (Polynomial-time Monte Carlo algorithms with one-sided error on “yes” instances.) A decision problem
belongs to the complexity class RP if there is an algorithm A with worst-case running time polynomial
in the input size and with

Pr[A is correct on x] ≥ 1
2 if x ∈ L

Pr[A is correct on x] = 1 if x /∈ L.

2We’ll ignore implementation details and use edge contractions as our notion of a “primitive operation.”

3

3. (Polynomial-time Monte Carlo algorithms with one-sided error on “no” instances.) A decision prob-
lem belongs to the complexity class co-RP if there is an algorithm A with worst-case running time
polynomial in the input size and with

Pr[A is correct on x] = 1 if x ∈ L
Pr[A is correct on x] ≥ 1

2 if x /∈ L.

4. (Polynomial-time Monte Carlo algorithms with two-sided error.) A decision problem belongs to the
complexity class BPP if there is an algorithm A with worst-case running time polynomial in the input
size and with

Pr[A is correct on x] ≥ 2
3 if x ∈ L

Pr[A is correct on x] ≥ 2
3 if x /∈ L.

(a) (4 points) Prove that ZPP is contained in each of the other three classes. (I.e., given a Las Vegas
algorithm for a problem with expected polynomial running time, show how to extract from it algorithms
of the other three types.)

[Hint: start by using Markov’s inequality (see Exercise #3) to bound the probability that the running
time of a ZPP algorithm is more than a constant factor larger than its expectation.]

(b) (4 points) Prove that ZPP = RP ∩ co-RP. (I.e., in light of (a), show how to extract a Las Vegas
algorithm with expected polynomial running time from Monte Carlo algorithms with each type of
one-sided error.)

(c) (4 points) Consider a randomized algorithm A for a decision problem L that runs in worst-case poly-
nomial time and “knows when it’s right,” meaning that it outputs “yes” only when x ∈ L, outputs
“no” only when x /∈ L, and additionally might output “fail” (whether or not x ∈ L). Suppose that,
for every (yes or no) input, A outputs “fail” with probability at most 1

2 . Prove that L ∈ ZPP. (I.e.,
convert A into a Las Vegas algorithm for the problem.)

(d) (4 points) Suppose we modify the definition of RP by replacing the “ 1
2” by “ 1

|x|10 ,” where |x| denotes

the size of input x. Prove that the corresponding complexity class remains the same (i.e., a decision
problem L belongs to RP under the new definition if and only if it does under the original definition).

(e) (4 points) Suppose we modify the definition of BPP by replacing the “ 2
3” by “ 1

2 .” Would the resulting
complexity class be the same as BPP? Explain your answer.

Problem 6

(17 points) Recall that, for the Max Cut problem (Lecture #2), a random cut gives a 1
2 -approximation in

expectation. (Specifically, the expected weight of the edges crossing a random cut is 50% times the sum of
the weights of all of the edges.) This problem outlines one way to derandomize that algorithm. The plan
is to identify a polynomial-size set S of cuts (depending on n but not on the specific graph) such that, for
every n-vertex graph, at least one of the cuts of S is a 1

2 -approximation. Given such a set S, we can obtain
a deterministic 1

2 -approximation algorithm for Max Cut by enumerating all of the cuts of S and returning
the best of them.

For a positive integer k, consider the following mapping from k-bit strings to n-bit strings, where n =
2k−1. Coordinates of the output correspond to the 2k−1 non-empty subsets of {1, 2, . . . , k}. A k-bit string
b1b2 . . . bk is mapped to an n-bit string where the output bit corresponding to a non-empty set S is set to∑
i∈S bi mod 2. (I.e., to the “sum mod 2,” or equivalently the “XOR” or “parity,” of the input bits in the

coordinates specified by S.) For example, when k = 3 (and n = 7):

4

Input {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
000 0 0 0 0 0 0 0
001 0 0 1 0 1 1 1
010 0 1 0 1 0 1 1
011 0 1 1 1 1 0 0
100 1 0 0 1 1 0 1
101 1 0 1 1 0 1 0
110 1 1 0 0 1 1 0
111 1 1 1 0 0 0 1

Observe that in each pair of columns, each of the 4 possibilities (00, 01, 10, and 11) occurs exactly twice.
Thus, if we choose a row uniformly at random, for every 1 ≤ i < j ≤ 7,

Pr[(Xi, Xj) = (0, 0)] = Pr[(Xi, Xj) = (1, 0)] = Pr[(Xi, Xj) = (0, 1)] = Pr[(Xi, Xj) = (1, 1)] =
1

4
, (1)

where Xi and Xj denote the values of the entries of the chosen row in the ith and jth coordinates. In other
words, the random variables (X1, . . . , X7) are pairwise (a.k.a. 2-wise) independent. I.e., from the perspective
of any pair of random variables, it’s as if the output string was chosen uniformly at random from the 27 = 128
possibilities (as opposed to the 8 possibilities it was actually chosen from).

(a) (6 points) Prove that the construction above works in general. That is, for an arbitrary positive
integer k and n = 2k − 1, consider the map λk given by

b1b2 . . . bk 7→ xS1
xS2

. . . xSn

with
xS =

∑
i∈S

bi mod 2,

where the Si’s range over the 2k − 1 non-empty subsets of {1, 2, . . . , k}. Prove that if a k-bit string b
is chosen uniformly at random, then the output bits (X1, . . . , Xn) of λk(b) are pairwise independent,
meaning that (1) holds for every 1 ≤ i < j ≤ n.

(b) (6 points) Use the construction in (a) to give a deterministic 1
2 -approximation algorithm for the Max

Cut problem.

[Hint: to prove a guarantee of 1
2 for a uniformly random cut, how much randomness do you really

need?]

(c) (5 points) Can you use the construction in (a) to derandomize the 7
8 -approximation algorithm for MAX

3SAT from Lecture #2? Explain your answer.

5

