COMS 4995 (Randomized Algorithms): Exercise Set #8

For the week of October 28–November 1, 2019

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or in the course discussion forum.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 36

In the *realizable* special case of PAC learning, the ground truth function $f : \mathbb{R}^d \to \{0, 1\}$ belongs to the hypothesis class \mathcal{H} . In this case, there will always be a hypothesis in \mathcal{H} with zero training error (if nothing else, f itself), and so the ERM algorithm will return an (arbitrary) hypothesis with zero training error. The worry is that the algorithm will be tricked into outputting a hypothesis with large generalization error that just happened to make no errors on the training data.

Suppose \mathcal{H} is finite. Prove that once

$$m \ge \frac{c}{\epsilon} \left(\ln \frac{1}{\delta} + \ln |\mathcal{H}| \right)$$

for a sufficiently large constant c > 0, with probability at least $1 - \delta$ (over a size-*m* sample from the unknown distribution *D*), the ERM algorithm outputs a hypothesis with generalization error at most ϵ .¹

Exercise 37

Recall from Lecture #15 the growth function $G_{\mathcal{H}}(\cdot)$ of a hypothesis class \mathcal{H} , with

$$G_{\mathcal{H}}(m) := \max_{S : |S|=m} \left| \{h|_S : h \in \mathcal{H} \} \right|.$$

In other words, $G_{\mathcal{H}}(m)$ is the maximum number of distinct restrictions that the functions of \mathcal{H} induce on any size-*m* sample.

Recall also from Lecture #15 that we proved a uniform convergence bound parameterized by the growth function of \mathcal{H} : as long as

$$m \ge \frac{c_1}{\epsilon^2} \left(\ln \frac{1}{\delta} + \ln |G_{\mathcal{H}}(2m)| \right) \tag{1}$$

for a sufficiently large constant c_1 , with high probability over a random sample S of size m from the unknown distribution D, for every $h \in \mathcal{H}$, the training error of h on S is within $\pm \epsilon$ of the generalization error of h with respect to D.

Prove that if $|G_{\mathcal{H}}(m)| = O(m^d)$, then the inequality (1) holds once

$$m \ge c_2 \cdot \frac{d}{\epsilon^2} \ln\left(\frac{d}{\epsilon\delta}\right)$$

for a sufficiently large constant c_2 .

¹Note the key point: in the realizable case, the dependence of the sample complexity of PAC learning on $\frac{1}{\epsilon}$ improves from quadratic to linear.

Exercise 38

Let \mathcal{H} be the set of linear classifiers in the plane. (I.e., an $h \in \mathcal{H}$ is specified by $a, b, c \in \mathbb{R}$, and labels points $(x, y) \in \mathbb{R}^2$ either 1 or 0 according to whether $ax + by + c \ge 0$ or not.) Prove that $\mathcal{G}_{\mathcal{H}}(m) = O(m^2)$.

Exercise 39

Extend your argument in the previous exercise to obtain a bound on the growth rate function of linear classifiers in \mathbb{R}^d for arbitrary $d \in \mathbb{N}$.