COMS 4995 (Randomized Algorithms): Exercise Set #3

For the week of September 16–20, 2019

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or in the course discussion forum.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 11

Fix a domain U and a range $\{1, 2, ..., n\}$. Suppose \mathcal{H} is a *universal* family of hash functions, meaning that for every $x, y \in U$ with $x \neq y$, $\mathbf{Pr}[h(x) = h(y)] \leq \frac{1}{n}$, where the probability is over the uniform distribution on \mathcal{H} . Prove that in a hash table with separate chaining, for every fixed data set $S \subseteq U$ and element $x \notin S$, the expected (unsuccessful) search time for x is $O(1+\alpha)$, where $\alpha = \frac{|S|}{n}$ is the load of the hash table. (Again, the expectation is over the uniformly random choice of $h \in \mathcal{H}$.)

[Hint: Define an indicator random variable X_y for each $y \neq x$, indicating whether h(y) = h(x). Use linearity of expectation.]

Exercise 12

Consider repeatedly flipping a coin with bias (i.e., probability of "heads") equal to p. Let X denote the number of flips needed until the first "heads." (This is called a *geometric random variable* with parameter p.) Prove that $\mathbf{E}[X] = \frac{1}{p}$.

[Recall why this came up in Lecture #4: in a hash table with open addressing, if we heuristically treat every probe in a probe sequence as an independent and uniformly random array position, then the number of probes needed to insert a new element is a geometric random variable with parameter $1 - \alpha$, where α is the load of the hash table.]

Exercise 13

Recall from lecture the cartoon plot of the functions $y = e^x$ and y = 1 + x. Let's compare the two functions more rigorously.

(a) Deduce that $1 + x \leq e^x$ for all $x \in \mathbb{R}$.

[Hint: one approach is to fiddle with the Taylor expansion of e^x . Another is to notice that e^x is convex (in fact, all of its derivatives are nonnegative) and consider a first-order approximation at x = 0.]

(b) Deduce that for x sufficiently close to 0, the following approximate reverse inequalities hold: for $x \in [0, \frac{1}{2}], e^x \leq 1 + 2x$; and for $x \in [-\frac{1}{2}, 0], e^x \leq 1 + \frac{x}{2}$.

[Hint: Fiddle with the Taylor expansion. Recall that this type of approximation came up in our analysis in Lecture #4 of the false positive rate of bloom filters under the random oracle assumption.]

Exercise 14

Let X be a random variable with finite expectation and variance; recall that $\operatorname{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$ and $\operatorname{StdDev}[X] = \sqrt{\operatorname{Var}[X]}$. Prove *Chebyshev's inequality*: for every t > 1,

$$\mathbf{Pr}[|X - \mathbf{E}[X]| \ge t \cdot \operatorname{StdDev}[X]] \le \frac{1}{t^2}.$$

[Hint: apply Markov's inequality to the (non-negative!) random variable $(X - \mathbf{E}[X])^2$.]