COMS 4995 (Randomized Algorithms): Exercise Set #11

For the weeks of November 25–December 4, 2019

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or in the course discussion forum.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 51

Recall the balls and bins setting and the power of two choices result from Lecture #21. In that proof, we defined the sequence $\beta_4 = \frac{n}{4}$

and

$$\beta_{i+1} = 2\frac{\beta_i^2}{n}$$

for all $i \geq 4$.

- (a) Prove that once $i \ge \log_2(\log_2 n) + O(1)$, $\beta_i < 1$.
- (b) Prove that the largest *i* for which $\beta_{i+1} \ge 12 \ln n$ satisfies $i = \log_2(\log_2 n) \pm O(1)$.

Exercise 52

Prove the following fact that we used in our proof in Lecture #21. Let Z_1, \ldots, Z_n be a sequence of arbitrary random variables and Y_1, \ldots, Y_n a sequence of 0-1 random variables with the property that each Y_i is fully determined by Z_1, \ldots, Z_i . (In the application in Lecture #21, the Z_i 's correspond to the bins that each ball wound up in, and the Y_i 's correspond to the Y_t 's from lecture.) Suppose that

$$\mathbf{Pr}[Y_i = 1 \mid Z_1, \dots, Z_{i-1}] \le p$$

with probability 1 (over Z_1, \ldots, Z_{i-1}). Let X_1, \ldots, X_n denote i.i.d. Bernoulli random variables with parameter p. Prove that, for every threshold k,

$$\mathbf{Pr}\left[\sum_{i=1}^{n} Y_i > k\right] \le \mathbf{Pr}\left[\sum_{i=1}^{n} X_i > k\right].$$

[Hint: Induction on n.]

Exercise 53

Continuing with Lecture #21, suppose we choose $d \ge 2$ bins uniformly at random (with replacement) rather than 2. (As usual, a ball is placed in the least loaded of the *d* randomly chosen bins, with ties broken randomly.) Generalize the heuristic analysis from Lecture #21 to argue that we might guess that the expected maximum load under this process is

$$\approx \log_d(\log_2 n) = \frac{\log_2(\log_2 n)}{\log_2 d}$$

Exercise 54

Generalize the argument in Lecture #22 to prove that Moser's algorithm, when given a k-SAT formula satisfying $d \leq 2^{k-3}$, terminates (with a satisfying assignment) within $O(m \log m)$ calls to Fix with high probability (tending to 1 as $m \to \infty$). (Here *m* denotes the number of clauses in the given formula, and *d* equals one plus the maximum degree of the dependency graph in which vertices correspond to clauses and edge correspond to pairs of overlapping clauses.)

[Hint: Suppose the algorithm fails to terminate within T calls to FIX with probability at least $\frac{1}{2}$, where the probability is over the n + kT random bits used in the initialization and the first (at most) T FIX calls. Following the argument from lecture, what can you say about T? What if the probability is at least $\frac{1}{4}$?]