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1 Introduction

In this lecture we will begin to prove exponential lower bounds for bounded-depth Frege proofs
(also called AC0-Frege proofs) of the propositional pigeonhole principle. That is, we will prove the
following theorem.

Theorem 1. Any AC0-Frege proof of PHPn+1
n requires exponential size.

There are many equivalent definitions of a depth-k Frege system. We will focus on one particular
one for the purposes of this lower bound, although the lower bound applies to a general class of
depth-k Frege systems over the standard DeMorgan basis (AND, OR and NOT). In our Frege
system, formulas will be restricted to the connectives ∨ and ¬. The ∨ connective is fan-in two,
but the depth is defined so that the depth does not increase unless we switch connective type. In
particular, the depth of a formula (or circuit) f is defined as follows:

Definition If f has no connectives then its depth is 0, otherwise depth of f is the maximum
number of alternation of connectives along any path from root to leaf plus 1.

Formulas or circuits in standard CNF or DNF form, for instance, have depth 2. Our Frege
system will be Shoenfields system. There is one axiom, ¬A ∨A for any formula A, and four rules:
(1) Expansion rule: from p, the formula q ∨ p can be derived; (2) Contraction rule: from p ∨ p,
the formula p can be derived; (3) Associative rule: from p ∨ (q ∨ r), the formula (p ∨ q) ∨ r can be
derived; and (4) The Cut rule: from p ∨ q and ¬p ∨ r, the formula q ∨ r can be derived.

If Γ is a sequence of formulas, then the size of Γ is the number of distinct subformulas in Γ.
The depth of a proof in our Frege system is the maximum depth of a line in the proof.

2 Overview

An overview of the proof is as follows. Assume for sake of contradiction that P is a small Frege
proof of the pigeonhole principle of depth d. We will apply a sequence of restrictions to all of
the subformulas in the proof, and an associated interpretation of each of the subformulas under
the restriction, so as to obtain an evaluation of each formula in the proof. The evaluation of each
subformula will be a matching decision tree of small height. A key property of these decision trees

1



CS 2429 - Propositional Proof Complexity Lecture #9: 7 November 2002

will be that they are all 1-trees. But on the other hand, the decision tree that will be associated
with the pigeonhole principle will always be a 0-tree, and hence we obtain a contradiction.

The above very brief overview combines ideas from circuit complexity and model/proof theory.
From circuit complexity, we use the idea of applying a restriction and an associated switching lemma
in order to simplify the formula. From model/proof theory, we apply the idea of interpreting each
formula in a local fashion that is consistent with the negation of the pigeonhole principle.

In order to explain the switching lemma part of the argument, we will begin by introducing
the restriction method, and first see how to apply it in the much simpler context of proving lower
bounds for bounded-depth circuits. In the subsequent lecture, we will tackle the proof theory part
of the argument.

3 The Restriction Method

The restriction method is used in both circuit complexity and proof complexity for proving lower
bounds.

Definition A restriction ρ is a partial assignment of values to a set of boolean variables {x1, x2, ..., xn},
i.e. ρ : {x1, x2, ..., xn} → {0, 1, ∗} where ρ(xi) = ∗ indicates that the variable xi is not assigned
any value by this restriction.

When we apply a restriction ρ to a boolean function f we get a boolean function f�ρ which is
the result of substituting ρ(xi) for xi for all places where ρ(xi) 6= ∗. We say that all variables xi
such that ρ(xi) = ∗ are unset and obviously the resulting function becomes a function of the unset
variables.

Restrictions simplify formulas, circuits, or functions that we have. The simplification we obtain
by restricting a small set of variables is typically substantially more than the number of variables
we set. For example, given f = (

∨
i xi ∨

∨
j ¬xj), a single assignment ρ(xi) = 1 or ρ(xj) = 0 makes

f �ρ a constant. To prove small circuits C cannot compute a complex function f , we show that
there is a restriction ρ such that f �ρ is still complicated but C �ρ is so simple that it obviously
cannot compute f�ρ. In this way we can prove a lower bound.

3.1 Decision Trees

When using restriction method, we will associate a decision tree with each gate of a circuit or each
formula appearing in a proof.

Definition A decision tree T over x1, ...xn is a binary tree such that

1. each internal node of T is labelled with some variable xi,

2. edges out of a node xi are labelled by xi = 0 or xi = 1,

3. no two nodes on a path have the same variable label, and

4. leaf nodes are labelled 0 or 1.
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Figure 1: Decision tree for function f .

Each root to leaf path of a decision tree defines a partial restriction ρ to {x1, ..., xn}. More
precisely, for v ∈ {0, 1}, xi ← v is in ρ iff on that root to leaf path, the out edge labelled xi = v is
taken.

Definition Depth of a decision tree is the height of the tree.

Definition A decision tree T over {x1, ..., xn} computes a boolean function f of {x1, ..., xn} iff
for every root to leaf path (or branch) B of T , the restriction ρ corresponding to branch B has the
property that f�ρ equals the leaf label of B.

Definition A t-DNF formula is the disjunction of terms having maximum term size t (number of
literals in the term is at most t). A t-CNF formula is the conjunction of clauses having maximum
size t.

Decision trees give a natural way of describing the function they compute as a CNF or DNF
formula. If a boolean function f can be represented/computed by a height h decision tree, then f
can be represented by an h-DNF by associating a term with each branch with leaf label 1 and also
by an h-CNF formula by associating a clause with each branch with leaf label 0.

Example The function f in Figure 1 can be represented in DNF as f = x̄2x4 ∨ x2x̄5 and in CNF
as f = (x2 ∨ x4) ∧ (x̄2 ∨ x̄5 ∨ x1) ∧ (x̄2 ∨ x̄5 ∨ x̄1).

3.2 Lower Bound for Parity

The parity function can be defined as follows:

Parity(x1, ..., xn) = 1 if (x1, ..., xn) mod 2 = 1

To prove the lower bound for Parity, we will proceed in the following way. We want to show
that no circuit having size at most s and depth at most d computes Parity. Here, our circuits
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are assumed to be over the connectives ∨ and ¬ although now ∨ as having unbounded fanin, and
depth will be defined in the usual way. We will prove that by contradiction. Fix a circuit S of size
s and depth d.

1. At first note the following important property of Parity, for any restriction ρ, Parity�ρ is
either parity or its negation on the variables that are still not assigned a value, i.e.,

[Parity(x1, ..., xn)]�ρ= Parity(xi1 , ..., xinε ) or ¬Parity(xi1 , ..., xinε )

where xi1 , ..., xinε are variables left unset by ρ.

2. Then show there exists a restriction ρ = ρ1ρ2 · · · ρd−1 such that the number of variables left
unset by ρ is at least nε for some ε.

3. By Switching Lemma, which we will discuss shortly, S�ρ can be represented by a simple circuit,
i.e., by a t-DNF formula where t << nε. This contradicts the fact that any DNF formula
computing parity (or the negation of parity) of n bits has to have terms of size > n− 1.

Therefore, no such small circuit S exists.
To find restrictions for parity, we start at the inputs of the circuit and work upwards one layer

at a time. As we go along, we maintain a current restriction ρi and a decision tree Ti(g) for each
gate g in the first i layers such that Ti(g) computes g�ρi .

For layer 0, the gates are input variables, ρ0 is empty and all decision trees have height 1. As
we move up from layer i − 1 to layer i, any new gate h is either a negation or an OR. If h = ¬g,
we let Ti(h) be Ti(g) with the labels on its leaves flipped from 0 to 1 and vice versa. The case
when h = (g1 ∨ ... ∨ gl) is more complex. It might happen that h�ρi requires tall decision trees
even if Ti(gj) are short. We therefore look for a further small restriction π to the inputs in the
hope of simplifying h�ρi so that we might get a shorter tree. We would like to choose one π that
simultaneosly does this for all unbounded fan-in OR’s in the i-th layer (or which there are at most
S).

We will set ρi+1 = ρiπ and by our assumed properties of π, short Ti+1(h) exist for all gates
h in this layer. For all gates g below this layer, we will set Ti+1(g) = Ti(g)�π. We now continue
upward in the normal fashion and end by setting ρ = ρd for the depth d circuit. Since we have
been choosing π’s which gurantee short trees, if the circuit is small, the tree we end up with will be
shorter than the number of inputs that ρ leaves unset. By our earlier observation about restrictions
of parity, such a decision tree must be incorrect. This yields the lower bound.

Now we need to show how to get that restriction π. By Hastad Switching lemma such a
restriction can be found if the depth is limited. Using standard probabilistic method we can show
the existence of one such π. The idea is to choose a random small π and prove that the probability
that it fails to shorten the decision tree for any single OR gate h is less than 1/S. Now, There
are at most S OR gates in any layer. So the probability that there exists an OR gate in this layer
which is not shortened by π is strictly less than 1. So we conclude that there must exist a small π
that works.

Thus it was shown by Hastad, that any depth-d circuit for parity has exponential size. Using
the same argument with different parameter settings, the following theorem was also proven.

Theorem 2. Polynomial-size circuits for Parity require Ω(log n/log log n) depth.

So if the depth is greater than log depth, then it is necessary to blow up the size of the circuit.
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4 Switching Lemma

In this section we will state and prove the Hastad Switching Lemma, the key ingredient in the
proof outlined above, for showing that the Parity function cannot be computed with polynomial-
size bounded-depth circuits.

Let Rln to be the set of all restrictions ρ on a domain of n variables that have exactly l unset
variables.

Hastad’s switching lemma states that for any fixed r-DNF f , the probability that for a restrici-
ton ρ ∈ Rln, f�ρ does not have a height s decision tree representing it is small.[

small ∼
[
lr

n

]s
<

1

s
, s ∼ no(1)

]
Fix some r-DNF f and fix restriction ρ ∈ Rln. A restriction ρ is applied to f in order, so that

f�ρ is the DNF formula whose terms consist of those terms of f that are not falsified by ρ, each
shortened by removing any variables that are satisfied by ρ, and taken in the order of occurrence
of the original terms on which they are based.

A canonical decision tree for f�ρ, T (f�ρ) is as follows:

1. if f�ρ is the constant function 0 or 1 (contains no term or has an empty first term, respectively)
then the corresponding decision tree consists of a single leaf mode labelled by the appropriate
constant value.

2. If the first term C1 of f �ρ is not empty then let f ′�ρ be the remainder of f �ρ so that f �ρ
= C1 ∨ f ′�ρ. Let K be the set of variables appearing in C1. The decision tree starts with
a complete binary tree for K, which queries the variables in K in the order induced by the
order of the indices. Each leaf i in the tree is associated with a restriction ρσi which sets
the variables of K according to the path from the root to i. For each ρσi we replace the leaf
node , i, by the subtree corresponding to f�ρσi . (Note that for the unique ρσi which satisfies
C1 the leaf i will remain a leaf and be labelled 1. For all other choices of ρσi, the tree that
replaces i is the tree corresponding to f�ρσi which is same as the tree corresponding to f ′�ρσi .

Example Let f = x1x2 ∨ x5x7 ∨ x3x4 ∨ x6x5 and the restriction ρ is x1 = 0, x3 = 1. Then
f�ρ= x5x7 ∨ x4 ∨ x6x5. The corresponding canonical decision tree for f�ρ is shown in Figure 2.

We’ll show that for any DNF formula f , for an appropriately chosen restriction ρ, the height of
T (f�ρ), |T (f�ρ)|, is small with high probability. This lemma is a switching lemma due to Hastad
because it will allow us to obtain a DNF formula with short terms for ¬f�ρ by taking the terms
corresponding to the paths in T (f�ρ) that have leaf labels 0.

Lemma 3 (Hastad’s Switching Lemma). Let f be a DNF formula in n variables with terms of
length at most r (r-DNF). For s ≥ 0, l = pn, and p ≤ 1/7,

|
{
ρ ∈ Rln : |T (f�ρ)| ≥ s

}
|

|Rln|
< (7pr)s.

Before giving the proof of the switching lemma we give the following definition.
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Figure 2: Canonical decision tree for f�ρ= x5x7 ∨ x4 ∨ x6x5.

Definition stars(r,s) is the set of all sequences β = (β1, ..., βk) such that for each j, βj ∈
{∗,−}r\{−}r and such that the total number of ∗’s in all the βj is s.

Lemma 4. |stars(r, s)| < (r/ln 2)s.

Proof For convenience in the proof we shall include the empty string in stars(r, 0) which would
otherwise be empty. It is sufficient to show that |stars(r, s)| ≤ γs for (1 + 1/γ)r = 2 because we
have,

ln(1 + 1/γ) =
ln 2

r

i.e, 1 + 1/γ = e
ln 2
r < eγ as 1 + x < ex for x 6= 0

i.e,
ln 2

r
< γ

Induction on s. The base case s = 0 follows trivially. Now suppose that s > 0. It is easy to
see from the definition that for any β ∈ starts(r, s), if β1 has i ≤ s *’s then β = (β1, β

′) where
β′ ∈ stars(r, s− i). (For i = s we have used our augmentation of stars(r, 0).) There are

(
r
i

)
choices

of β1 so

|stars(r, s)| =
min(r,s)∑
i=1

(
r

i

)
|stars(r, s− i)|

≤
r∑
i=1

(
r

i

)
γs−i

= γs
r∑
i=1

(
r

i

)
(1/γ)i

= γs[(1 + 1/γ)r − 1]

= γs
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by the inductive hypothesis and the definition of γ. �
Proof: (Hastad Switching Lemma) We only need to consider s > 0. Let S ∈ Rln be the set of
restrictions ρ such that |T (f�ρ)| ≥ s i.e., S is the set of bad restricitons for f under which the input
DNF formula f is not sufficiently simplified. We’ll show that a bad restriction can be mapped to an
element of a small set in such a way that knowledge of the formula permits one to reconstruct the
original bad restriction from the image of this map and thus the number of such bad restrictions
is small. We’ll show that |S| is small (so |S|

|Rln|
) by constructing a 1-1 map from S to B − set of all

string of a fixed size where |B| << |Rln|. More precisely we define a 1-1 map

S → Rl−sn × stars(r, s) × 2s.

Let f = C1 ∨ C2 ∨ C3.... Suppose that ρ ∈ S and let π be the restriction associated with the
lexicographically first path in T (f�ρ) that has length ≥ s (any way of canonically associated such a
long path will do.) Trim the last few varibales set in π along the path from the root so that |π| = s.
We use formula f and π to determine the image of ρ. The image of ρ is defined by following the
path π in the canonical decision tree for f�ρ and using the structure of that tree (see Figure 3).

Let Ci1 be the first term of f that is not set to 0 by ρ. Then Ci1�ρ will be the first term in f�ρ.
Since |π| > 0, such a term must exist and will not be the empty term. Let K be the set of variables
in Ci1�ρ and let σ1 be the unique restriction of the variables in K that satisfies Ci1�ρ. Let π1 be
the portion of π that sets the variables in K. We have two cases based on whether or not π1 = π.

1. If π1 6= π then by the construction of π, π1 sets the variables in K. Note also that Ci1�ρσ1= 1
but since π1 6= π, π1 6= σ1, and thus Ci1�ρπ1= 0.

2. if π1 = π then it is possible that π does not set all of the variables in K. In this case we
shorten σ1 to the variables in K that appear in π1. Now all we know is that Ci1�ρσ1 6= 0.

Define β1 ∈ {∗,−}k based on the fixed ordering of the variables in term Ci1 by letting the j-th
component of β1 be ∗ if and only if the j-th variable in Ci1 is set by σ1. Note that since Ci1�ρ is
not the empty term there is at least one ∗ in β1. From Ci1 and β1 we can reconstruct σ1.

Now, by the definition of T (f�ρ), π \ π1 labels a path in the canonical tree T (f�ρπ1). If π1 6= π,
we repeat the above argument, with π \ π1 in place of π, ρπ1 in place of ρ and find a term Ci2
which is the first term of f not set to 0 by ρπ1. Based on this we generate π2, σ2, and β2 as before.
We repeat this process until the round k in which π1π2...πk = π.

Let σ = σ1σ2...σk. We finally define δ ∈ {0, 1}s to be a vector that indicates for each variable
set by π (which are the same as those set by σ) whether it is set to the same value as σ sets it.

The image of ρ under the 1-1 map we define is a triple , 〈ρσ1...σk, (β1, ..., βk), δ〉. Clearly
ρσ = ρσ1...σk ∈ Rl−sn and (β1, ..., βk) ∈ stars(r, s) so the map is as required.

It remains to show that the map we have just defined is indeed 1-1. To do this, we show how to
recover ρ from its image. The reconstruction is iterative. In the general stage of the reconstruction
we will have recovered π1, ...πm−1, σ1, ..., σm−1, and will have constructed ρπ1...πm−1σm...σk. Recall
that for m < k, Cim�ρπ1..πm−1σm= 1 and Cj�ρπ1..πm−1σm= 0 for all j < im. This clearly also holds
when we append σm+1...σk to the restriction. when m = k, something similar occurs except the
only guarantee is that Cim�ρπ1..πk−1σk 6= 0. Thus we can recover im as the index of the first term of
f that is not set to 0 by ρπ1...πm−1σm..σk.
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Figure 3: Canonical decision tree T (f�ρ)
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Now, based on Cim and βm we can determine σm. Since we know σ1, ..., σm, using the vector
δ we can determine πm. We can now change ρπ1...πm−1σm..σk to ρπ1...πm−1πmσm+1..σk using the
knowledge of πm and σm. Finally, given all the values of the πm we can reconstruct ρ.

Now we compute the value |S|/|Rln|:
|Rln| =

(
n
l

)
2n−l so

|Rl−sn |
|Rln|

=
l(s)

(n− l + s)(s)
· 2s ≤ (2l)s

(n− l)s
.

Applying the bounds we obtain

|S|
|Rln|

≤ |R
l−s
n |
|Rln|

· |stars(r, s)| · 2s

≤
(

4lr

(n− l) ln 2

)s
=

(
4pr

(1− p) ln 2

)s
for l = pn. For p < 1/7 this is at most (7pr)s. �

5 Lower bound for AC0-Frege proofs of PHP n+1
n .

We have discussed PHPn+1
n problem in details in our third and fourth lectures.

In circuit complexity, for each gate g of a given circuit, we define decision trees T (g) that
precisely computed each g�ρ in the circuit. But in case of proof complexity if we define a decision
tree for each formula (or subformula) that appears in the proof, this cannot possibly work because
every formula in the proof is a tautology and hence computes the constant function 1. So we use
a different notion of decision trees that approximate each formula such that the bigger the proof
the worse approximation we get.

Here for proving lower bound of PHPn+1
n we will use matching decision trees. We will explain

it elaborately in the next lecture.
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