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In the previous lecture we presented the first part of the proof that for the AC0-Frege proof
systems (also called bounded depth Frege proof systems) there exists an exponential lower bound
with respect to the proof size. In order to establish this result we started to prove that every
PHPn+1

n proof requires exponential proof size. The attack to this problem uses the following
tools: (a)“translation” of the switching lemma from the circuit complexity to the proof complexity
context and (b) an interpretation from model/proof theory. From model/proof theory we apply
the idea of interpreting each formula in a local fashion that it is consistent with the negation of the
pigeonhole principle derived formula. In this lecture we define and sketch the proof of the switching
lemma.

Theorem 1 Any AC0-Frege proof of PHPn+1
n requires exponential size.

1 Overview

There is a difference between the use of the decision trees in circuit complexity lower bound proof
and their use in proof complexity. The problem is that we cannot straightforward relate a decision
tree with each formula or subformula (as we did with the gates of the circuits), because each
formula/subformula is a tautology and hence computes the constant 1. So, subsequently, we are
going to define the notion of Matching Decision Trees. The high level of this proof follows:

• Define matching decision trees and relate them with the restrictions. Show how to “combine”
matching decision trees.

• Prove a variation of the switching lemma we demonstrated in the previous lecture. This
switching lemma concerns the proof complexity. Specifically it concerns the pigeonhole prin-
ciple where we will use new distributions of the restrictions.

In this lecture we sketch the proof of the switching lemma and we give the basic intuition behind
the semantics we are going to use.

2 Matching Decision Trees and Restrictions

We begin with some definitions, and then we are going to prove a few properties for them.
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Definition

1. A restriction ρ is a matching from D to R.

2. A matching term is the associated set of literals (i.e. P32, P45, P54).

Definition A matching covers a pigeon at the hole i if some edge in matching mentions i.

Definition A matching disjunction is an unbounded disjunction of matching terms. An r-
disjunction is a matching disjunction where all terms have size at most r. For example P11P22 ∨
P34P21 ∨ P54P11 is a 2-disjunction.

Definition Let t be a matching term and let ρ be a matching restriction. Then t|ρ is defined as
follows: If there exists a variable Pi,j that occurs in t and either ρ maps i to some j′ 6= j or ρ maps
some i′ 6= i to j, then Pi,j |ρ = 0 and therefore t|ρ = 0. Otherwise for every variable Pi,j in t such
that t contains Pi,j , Pi,j is set to 1 by ρ.

Let F = C1 ∨ C2 ∨ . . . ∨ Cn be a matching disjunction and ρ a matching restriction. Then F |ρ
is another matching disjunction obtained by applying ρ to each term one at a time. If any term is
set to 1 under ρ, then F |ρ = 1, and if all terms are set to 0 under ρ, then F |ρ = 0.

For example, let F = P17P38 ∨P16P27 ∨P49P56 ∨P16P59, and let ρ be the restriction that maps
pigeon 2 to hole 8, and pigeon 3 to hole 7. Then : F �ρ= P27 ∨ P59.
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Figure 1: A canonical matching decision tree for P2,7 ∨ P5,9.

Definition A matching tree T over S = D ∪R is a tree satisfying the following conditions:

1. The nodes of the tree, other than the leaves, are labeled with vertices of S.

2. If a node of a T is labeled with a vertex i ∈ S then the edges leading out of the vertex are
labeled with distinct pairs of the form {i, j}, where j ∈ R if i ∈ D or j ∈ D if i ∈ R.

3. No vertex or edge label is repeated on a branch of T .
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4. If p is a vertex of T then the edge labels on the path from the root of T to p determine a
matching π(p) between D and R.

Definition The branches of T Br(T ) is the set of all matching terms/restrictions associated with
the paths of T . We distinguish between the paths having as leaves 1 and 0. Then, Br1(T ) ∪
Br0(T ) = Br(T ).

Formally, the above definition corresponds to Br(T ) = {π(l)|l is a leaf of T}.
If M is the set of matchings, then T is complete for M if for every vertex p in T labeled with a
vertex i ∈ S, the set of matchings {π(q)|q is a child of p} consists of all matchings of M of the
form π(q) ∪ {{i, j}}.

Definition If F is a matching disjunction and T is a matching decision tree then T represents F
if for every π ∈ Br(T ), F �π= 1. If π is labeled 1 in T and F �π= 0 if π is labeled by 0 in T .

Below we provide the inductive definition of a canonical matching tree.

Definition Let F = C1 ∨ . . . ∨ Cm be a matching disjunction over S. The canonical matching
decision tree for F over S, TreeSF , is defined inductively as follows:

1. If F ≡ 0 then TreeS(F ) is a single node labeled 0. If F ≡ 1 then TreeS(F ) is a single node
labeled 1.

2. If F 6≡ 1 and F 6≡ 0, then let C be the first matching term in F such that C 6≡ 0. Then
TreeS(F ) is constructed as follows:

(a) Construct the full matching tree for the vertices that are associated with variables
occurring in C.

(b) Replace each leaf l of the previously constructed full matching tree by the canonical
matching decision tree TreeS�π(l)(F � π(l)).

See Figure 1 for an example of a construction of a canonical decision tree associated with a
matching disjunction.

Important Remark: The same tree can represent a lot of formulae. The reason is that we
do not have values for the hole truth assignment.

We schematically sketch the definition of a restriction applied to a complete matching decision
tree: Let T be a complete matching decision tree and ρ a restriction. Consider the tree of figure
1. Then T �ρ is another matching decision tree obtained as in figure 2. You can observe that
the restriction shrinks the tree. The new (derived under the restriction) tree is the one of figure
3. The X’s means that the variable labelling this edge is set to either 0 or 1 by the restriction.
For example, the edge labelled ”3,7” is set to 0, and the edge labelled ”4,7” is set to 1. The new
derived tree is obtained by pruning the original tree in the natural way starting at the root: (ii)
if there is an edge from the root to a vertex v that is labelled 1, we replace the whole tree with
the subtree rooted at v; (ii) otherwise, for any edge from the root to a vertex v labelled by 0, we
remove this edge as well as the subtree rooted at v.
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Figure 2: We apply the restriction ρ : 4→ 7
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Figure 3: The resulting tree, after the application of the restriction (see figure 2).

Definition Let T be a matching decision tree, then T c is the tree T with the leaf labels comple-
mented (just change the leaves from 0 to 1 and vice versa).

Definition Disj(T ) = t1 ∨ . . . ∨ tm, where {t1, . . . , tm} = Br1(T ).

Lemma 2 Let T be a matching decision tree, ρ a restriction.

1. Disj(T ) �ρ= Disj(T �ρ).

2. If T is complete for D,R then T �ρ is complete for D �ρ, R �ρ.

3. (T �ρ)c = T c �ρ

4. If l is a leaf in T �l then there is a leaf l′ in T with the same label as l so that π(l′) ⊆ π(l)∪ρ,
where π is a restriction or a matching term.

5. If T represents F , then T �ρ represents F �ρ.

From the above lemma the “most important” part for our proof is the (5).
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3 Evaluations and the Matching Switching Lemma

Let P be a small (that is 2n
s
, where s < 1

5d
) depth of Frege proof of PHPn+1

n . P = F1, F2, . . . , Fm,
where Fm =PHPn+1

n bounded depth Frege proof. Let R be their set of all subformulae occurring
in P (think of it of the corresponding way, of as having many circuits).

Definition R = R1 ∪R2 ∪ . . . ∪Rd, where Ri is the depth1 i subformulae in R.

Let Mρ
n = {ρ ∈ Mn|R �ρ= l}. We intuitively define which is bad: “you” are bad if the

corresponding canonical tree has height bigger than s. Hence:
Badln(F, s) = {ρ ∈M l

n| height(TreeS�ρ(F �ρ)) ≥ s}

Lemma 3 Let F be an r-disjunction over D,R, where |D| = n + 1, |R| = n, l ≥ 10, ρ = l
n . If

r ≤ l and p4n3 ≤ 1/10 then:
|Badln(F, 2s)|
|M l

n|
≤ (11p4n3r)s

The proof goes like the one we have seen in the previous lecture (lecture 9). Now we are going
to put everything together:

Definition Let R be as defined previously. A k-evaluation T is an assignment of a complete
matching decision trees T (A) to formulae A in R such that:

1. T (A) has depth less or equal to k.

2. T (1) is the single node labeled 1, and T (0) is the single node labeled 0.

3. T (Pij) is the full tree for i, j over D,R (i.e. the canonical tree for Pij).

4. T (¬A) = T (A)c

5. If A is a disjunction A = A1 ∨A2 ∨ . . . ∨Ak, then T (A) represents ∨i∈IDisj(T (Ai)).

This is one of the basic concepts of the proof. Semantically there is some connection with the
tree and the representation as it is shown in figure 4. For example if all leaves are labeled to 1 we
have a “kind” of “tautology”. However this notion of “tautology” is not preserved under (sound)
inferences. This is the key idea of the lower bound argument.

This connection can be demonstrated by the example of figure 5 (Attention! This is not a
formula which corresponds to the PHP; we provided it here only to exemplify things). We will talk
about this “semantic connection” in the next lecture.

1For a definition of circuit depth see at lecture 9
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