Due: Tuesday, Nov 29, 11:59pm

1. (5 points) Prove that a theory Σ is consistent if and only if Σ has a model.
2. (15 points) Are each of the following languages (i) recursive, (ii) r.e. but not recursive, (iii) not r.e. Prove your answer. Do not use the S-m-n theorem.
(a.) (5 points) Let \mathcal{L} be the set of all numbers x such that x codes a TM program, and 10 is in the range of the function computed by the program.
(b.) (5 points) Let \mathcal{L} be the set of all numbers z such that z encodes a pair of numbers $\langle x, y\rangle$, where x encodes a TM program that halts within y steps on all inputs.
(c.) (5 points) Let \mathcal{L} be the set of all numbers x such that x encodes a TM program, and where the program coded by x halts on only finitely many inputs.
3. (5 points) (Exercise 4, Incompleteness Notes) Give a formula which represents the relation $y=2^{x}$.
4. (10 points) In class we showed that there is an $\exists \Delta_{0}$ formula $A(x, y)$ that represents the r.e. language K. Now suppose that $A(x)$ is an $\exists \Delta_{0}$ formula which represents the r.e. set K in PA. Show that there is a consistent extension Σ of $\mathbf{P A}$ such that $A(x)$ does not represent K in Σ.
5. (10 points) Prove that the set of true Δ_{0} sentences is recursive and therefore arithmetical. Show that the set of true $\exists \Delta_{0}$ sentences is r.e., and therefore arithmetical.
