RESOLUTION (RES)

Whereas PK is a propositional proof system (proves tautologies), RES is a propositional refutation system (proves unsatisfiability).

Defn A literal is an atom \(P \) or its negation \(\overline{P} \).

A clause \(C = (P \lor \overline{Q} \lor \overline{R} \lor \overline{S}) \) is a disjunction of literals.

A conjunctive normal form (CNF) formula

\[f = C_1 \land C_2 \land \ldots \land C_m \]

is a conjunction of clauses.

3SAT Theorem Let \(f \) be any propositional formula.

Then there exists a CNF formula \(f' \) such that

1. \(|f'| = 100 \cdot |f| \), and
2. \(f' \iff f \).

\[f' : (A_1 \iff P \land Q) \land (A_2 \iff A_1 \lor \neg P) \land (A_3 \iff R \lor \neg S) \land (A_4 \iff A_2 \land A_3) \land (A_4) \]

\[= (\neg A_1 \lor P) \land (\neg A_1 \lor Q) \land (\neg P \lor \overline{Q} \lor \overline{A_1}) \land (\neg A_2 \lor A_1 \lor \neg P) \land (\neg A_2 \lor \overline{A_1} \lor (P \lor A_2)) \land (\neg A_3 \lor R \lor \neg S) \land (\neg R \lor \overline{A_3} \lor (S \lor A_3)) \land (\neg A_4 \lor A_2 \land A_3) \land (\neg A_4 \lor A_3 \land (A_2 \lor \overline{A_3} \lor A_4)) \land A_4 \]
Resolution Rule Let \(C_1 = (l \lor A) \), \(C_2 = (\bar{l} \lor B) \)

where \(l \) is a literal, \(A, B \) clauses.

Then \(C_1, C_2 \) derives \(C_3 = (A \lor B) \).

A resolution refutation of an unsatisfiable CNF formula \(f = C_1 \land C_2 \land \ldots \land C_m \) is a sequence of clauses \(S_1, S_2, \ldots, S_q \) such that the final clause \(S_q = \emptyset \) (the empty clause), and all other clauses \(S_i \), \(i < q \) are either a clause in \(f \), or follow from two previous clauses by the Resolution Rule.

Example \(f = (P \lor Q) \land (\bar{Q} \lor R) \land (\bar{P} \lor S) \land (\bar{P} \lor \bar{S}) \lor (R) \)

\[
\begin{align*}
S_1 &= (P \lor Q) \\
S_2 &= (\bar{Q} \lor R) \\
S_3 &= (\bar{P} \lor S) \\
S_4 &= (\bar{P} \lor \bar{S}) \\
S_5 &= (R) \\
S_6 &= (P \lor R) \\
S_7 &= (\bar{P}) \\
S_8 &= \emptyset
\end{align*}
\]
Defn
Let f be an unsatisfiable formula, and let f' be the equivalent unsat formula in CNF given by the 3SAT theorem.
Then a Resolution refutation of f is a resolution refutation of f'.

Let g be a tautology. Let $f = \neg g$, and let f' be the equivalent 3CNF for f given by the 3SAT formula. Then a Resolution proof for g is a Res refutation of f'.

RES SOUNDNESS THEOREM
Let f be a CNF formula.
If f has a RES refutation, then f is unsatisfiable.

Let $f = c_1 \land \ldots \land c_m$, and let $P = C_1, C_2, \ldots, C_m, D_1, \ldots, D_i = \emptyset$ be a RES refutation of f. Prove by induction on i that if α is a satisfying assignment to C_1, \ldots, C_m, then α is a satisfying assignment to $C_1, \ldots, C_m, D_1, \ldots, D_i$. When $i = 0$, trivial.

For D_{i+1}, assume D_{i+1} derived from 2 previous clauses $(x \vee E) (x \vee F) \Rightarrow D_{i+1} = (E \lor F)$. Then α satisfies D_{i+1}. But D_i is unsatisfiable, thus α satisfies D_{i+1}, so f.

RES Completeness Theorem

Let \(f \) be an unsatisfiable CNF formula. Then \(f \) has a RES refutation.

Defn A decision tree for \(f(x_1, x_n) \) is a rooted tree, depth \(\leq n \):

- nodes of \(T \) labelled with variables \(x_i \)
- If a node labelled \(x_i \), its two out edges labelled by literals \(x_i \) and \(\overline{x_i} \)
- A path labelling corresponds to a partial truth assignment
- A node is a leaf iff \(f^T = 0 \) or \(1 \), where \(0 \) is the path labelling to \(n \).

Example

\[
f = (x \lor \overline{z})(z \lor \overline{y})(y \lor \overline{x})(\overline{y})
\]

Claim \(f \) is unsatisfiable iff for any decision tree \(T \) for \(f \), all leaves of \(T \) are labelled 0.
Let T be a decision tree for f, f an unsatisfiable CNF formula.

Then T can be converted into a RES refutation of a generalization of f, f'.

If $l_1...l_k$ labels path to n,
\[
\text{Clause}(n) = (\overline{l_1} \lor \overline{l_2} \lor ... \lor \overline{l_k})
\]

Example (from previous page)

![Decision Tree Diagram]

RES refutation of
\[
\begin{align*}
\bar{f}' &= (y \lor \neg z \lor x)(y \lor \neg z \lor \bar{x})(y \lor \bar{z})(\bar{y}) \\
f &= (x \lor \neg z)(z \lor \bar{x})(y \lor \bar{z})(\bar{y})
\end{align*}
\]

Definition: f' is a generalization of f iff for all clauses $C_i \in f'$, $\exists C_i \in f$ such that $C_i \subseteq C'$.

Claim: f' is a generalization of f.
Proof of Claim

By construction of T for f, for each leaf node l of T, there exists a clause $C_{X|f}$ that is falsified by the path to l.

By construction of T^*, for each leaf node l of T, the clause C^* associated with l is defined to be the maximum clause that is falsified by the path to l.

Thus, for each leaf l, $C_{X|f} \leq C^*$.
Proof of Resolution Completeness

1. Let \(f(x_1, \ldots, x_n) \) be an unsatisfiable CNF formula.

2. Create a decision tree \(T \) for \(f \). By claim, all leaves of \(T \) are labelled by 0.

3. Convert \(T \) to a RES refutation \(N^* \) of \(\phi' = \bigwedge C_i \), where \(\phi' \) is a generalization of \(f \).
 That is, for all \(C_i \in \phi' \), there exists a clause \(C_i \in f \) such that \(C_i \leq C_i' \).

4. (Exercise) Show that for any \(\phi' \), \(f \) where \(\phi' \) is a generalization of \(f \), a RES refutation of \(\phi' \) can be converted into a RES refutation of \(f \).

DLL Resolution Procedure

- Order \(x_1 \) to \(x_n \)
- Create two querying clauses in order unless there is a unit clause.