
CS 4995 Notes (S. Cook and T. Pitassi) Fall, 2022

Computability Theory

This section is partly inspired by the material in “A Course in Mathematical Logic” by Bell
and Machover, Chap 6, sections 1-10.
Other references: “Introduction to the theory of computation” by Michael Sipser, and “Com-
putability, Complexity, and Languages” by M. Davis and E. Weyuker.

Our first goal is to give a formal definition for what it means for a function on N to be com-
putable by an algorithm. Historically the first convincing such definition was given by Alan
Turing in 1936, in his paper which introduced what we now call Turing machines. Slightly
before Turing, Alonzo Church gave a definition based on his lambda calculus. About the
same time Gödel, Herbrand, and Kleene developed definitions based on recursion schemes.
Fortunately all of these definitions are equivalent, and each of many other definitions pro-
posed later are also equivalent to Turing’s definition. This has lead to the general belief that
these definitions have got it right, and this assertion is roughly what we now call “Church’s
Thesis”.

A natural definition of computable function f on N allows for the possibility that f(x) may
not be defined for all x ∈ N, because algorithms do not always halt. Thus we will use the
symbol ∞ to mean “undefined”.

Definition: A partial function is a function

f : (N ∪ {∞})n → N ∪ {∞}, n ≥ 0

such that f(c1, ..., cn) =∞ if some ci =∞.

In the context of computability theory, whenever we refer to a function on N, we mean a
partial function in the above sense.

Definitions:
Domain(f) = {~x ∈ Nn | f(~x) 6=∞}

where ~x = (x1 · · ·xn) We say f is total iff Domain(f) = Nn (i.e. if f is always defined when
all its arguments are defined).

Turing machines

A Turing Machine is specified by a 7-tuple, M = {Q,Σ,Γ, δ, q1, B, {q2}}, where Q =
{q1, q2, . . . , qk} is a finite set of states, Σ is a finite input alphabet, including the two el-
ements 0 and 1; Γ is a finite tape alphabet, such that Σ ⊆ Γ; q1 is the designated start state,
q2 is the designated halt state, and B ∈ Γ is a special blank symbol not in Σ. Lastly, the
transition function, δ, is a function from Q× Γ to Q× Γ× {L,R}.

54

Let Σ be a finite alphabet. Σ∗ denotes the set of all finite length strings over Σ. Let x ∈ Σ∗.
We visualize a Turing machine M over Σ on input x as consisting of an tape consisting of
an infinite sequence of cells , c0, c1, . . . ,. There is a tape head which points to one cell of the
tape, and at every point in time, the Turing machine is in one state qi ∈ Q. Each cell of the
tape contains an element from Γ. M on input x operates as follows. Initially M is in the
start state q1, and the infinite tape consists of x written on the first |x| consecutive cells,
followed by all blank symbols (B). At every time step, M makes one transition, according
to δ. If M is in state q and the tape head is currently reading symbol s at time t, and
δ(q, s) = (q′, s′, L/R), then at time t + 1, the new state is q′, the symbol s is replaced by
s′, and the tape head moves left/right one cell. (If the tape head is already at the leftmost
position, then on a L move, the head stays in place.) The computation terminates if the
current state of M is the halt state, q2. When M halts, define y to be the longest string on
the tape such that y contains no blank (B) symbols. Then M on x outputs y.

Turing machines compute n-ary partial (or total) functions from Nn to N by encoding the
input tuples and outputs as strings over Σ. First, we will assume that each number in N is
written in binary. We will encode an n-tuple a1, . . . , an by a string x where x consists of the
concatenation of a1, . . . , an (written in binary), with each ai separated by the symbol ”2”.
Let < a1, . . . , an > denote the encoding of a1, . . . , an. Let f be an n-ary total function. M
computes the function f if for every n-tuple a1, . . . , an, M on input < a1, . . . , an > outputs
y = f(a1..an) (again written in binary). In such a case, f is called a total computable function.

If f is a partial function, then M computes f if for all tuples a1, . . . , an in the domain of f ,
M on input < a1, . . . , an > outputs f(a1, . . . , an). Note that on inputs not in the domain of
f , M may not halt. In such a case, f is called a computable partial function.

Our form of Church’s Thesis:
Every algorithmically computable function is TM-computable.

Here the notion “algorithmically computable” is not a precise mathematical notion, but
rather an intuitive notion. It is understood that the algorithms in question have unlimited
memory. In the case of register machines, this means that each register can hold an arbitrarily
large natural number. It is a strong claim about the robustness of our formal notion of
computable function. In general, if we give an informal algorithm to compute a function,
then we can claim that it is computable, by Church’s Thesis.

Alonzo Church proclaimed this famous “thesis” in a footnote to a paper in 1936. Actu-
ally, he did not talk about TM’s, but rather claimed that every algorithmically computable
function is definable using the λ-calculus which he had invented. A little later Alan Turing
published his famous paper defining what are now called Turing machines, and argued, more
convincingly than Church, that every algorithmically computable function is computable
on a Turing machine. (Hence “Church’s Thesis” is sometimes called the “Church-Turing
thesis”.) Turing proved that Church’s λ-definable functions coincide with the Turing com-
putable functions. In fact, many other formalisms for defining algorithmically computable
functions have been given, and all of them turn out to be equivalent. This robustness is a
powerful argument in favour of Church’s thesis.

55

Exercise 1 Write Turing machine programs to compute each of the following functions:

f1(x) = x+ 1
f2(x, y) = x · y

Be sure to respect our input/output conventions for TM’s.

Let R ⊆ Nn. Thus R is an n-ary relation (predicate). We will think of R as a total 0-1
valued function as follows: R(~x) = 0 if and only if ~x ∈ R, and R(~x) = 1 otherwise.

Configurations

We can describe the computation of M on x at time t by a configuration. Let m be the
leftmost tape cell such that all cells to the right of q contain the blank symbol, B. Then
the configuration consists of the contents of the tape up to cell m, plus the current state,
q, plus the location, i, of the tape head. We will represent this information by the string
s1, s2, ..., (q, si), si+1, . . . , sm, where s1, . . . , sq are the contents of the tape cells up to cell m,
and where q is the current state. (The location of q within the string tells us the location of
the head.) The initial configuation of M on x is therefore the string (q1, x1), x2, . . . , xn−1, xn.

The computation of M on x is described by a sequence of configurations, c1, c2, . . ., where
c1 is the initial configuration of M on x, and such that each ci follows from the previous
configuration ci−1 by applying the transition function δ. If M halts on x, then this sequence
of configurations is finite. If M halts on x in m steps, we will visualize the corresponding
sequence of configurations as a tableaux, or m − by −m matrix, where the first row of the
matrix is the start configuration, and row i is the configuration at time t.

Encoding Turing Machines

We want to associate a number with each Turing machine over the input alphabet Σ =
{0, 1, 2}. Here is one way to do this.

Our convention is that the states of a TM are always called Q = {q1, q2, . . . , qn}, where q1 is
always the start state, and q2 is always the halt state. Similarly, assume that the tape symbols
are Γ = {x1, x2, . . . , xk} where x1 = 0, x2 = 1, x3 = 2 and x4 = B. Let ”left” be denoted by
D1 and let ”right” be denoted by D2. Then we represent the transition δ(qi, xj) = (qk, xl, Dm)
by 0i10j10k10l10m. The code for M is: 111code111code211 . . . 11coder111, where codei is the
code for one of the possible transitions.

Example Let M = (Q = {q1, q2, q3},Σ = {0, 1},Γ = {0, 1, B}, δ, q1, B, {q2}). Below we
describe the transitions and their corresponding codes:

• δ(q1, 1) = (q3, 0, R), c1 = 0110210310102

• δ(q3, 0) = (q1, 1, R), c2 = 031010102102

• δ(q3, 1) = (q2, 0, R), c3 = 0310210210102

56

• δ(q3, B) = (q3, 1, L), c4 = 0310410310210

Thus M is encoded by the string 111c111c211c311c4111, and the pair (M, 1011) is encoded by
the string 111c111c211c311c41111011. Note that given an encoding #(M,w), we can recover
the associated Turing machine M and string w.

A Universal Turing Machine

A Universal Turing function U takes as input a number #(M,x) where M is a Turing
machine. U on input #(M,x) outputs y if M on input x outputs y. Note that if M does
not halt on x, then U is undefined on x.

U is a computable function.

We will describe a 3-tape TM, MU . It is a well-known result that a k-tape Turing machine
can be simulated by a 1-tape Turing machine, and thus U is a computable relation. First MU

checks to see if #(M,x) is a valid encoding of a Turing machine, M , and if x is of the proper
format. If not, then MU does not halt. Otherwise, on input #(M,x), MU will simulate the
computation of M on x. The first tape of MU contains the code of M . The second tape of
MU will contain the contents of the tape of TM M as it is being simulated on input x. The
third tape of MU will contain state information.

• Initially, #(M,x) is on tape 1.

• Check tape 1 to make sure it is a valid input. That is, valid codes for M begin and
end with ”111” and each code codei is separated by 11, and the transitions are of the
form 0i10j10k10l10m, where m = 1 or 2.

• Initialize tape 2 to contain $x.

• Initialize tape 3 to contain $0 (this is the start state, q1, in unary).

• Initialize tape 1 to hold 11$code111code211 . . . 11coder111. (a) If tape 3 holds $000
(halt state q2), halt and output y, where y is the output of M when it halts; (b)
otherwise simulate the next step as follows. Let xj be the symbol scanned by head 2
and let 0i be the contents of tape 3. Scan tape 1 from $ to 111, looking for a string
beginning with 110i10j1. If no such string is found, halt and output 0 (reject). If such
a string is found, say it is 110i10j10k10l10m. Put 0k on tape 3, and write xl on the
tape cell scanned by head 2, and then move that head in direction Dm one cell.

Notation: {z} = the program P s.t. #(P) = ẑ

Thus {z} =

{
the program P such that #(P) = z if P exists
Λ (empty program) otherwise

{z}n is the n-ary function computed by the program {z}.

57

Recursive and Recursively Enumerable Sets

Recursive Sets

For this section, a set means a subset of Nn, where usually n = 1. Thus formally a set is the
same thing as a relation, which is the same as a total 0-1 valued function. Thus if A ⊆ Nn,
then we write

A(~x) =

{
0 if ~x ∈ A
1 otherwise

Definition: A set (or relation) is recursive (or computable or decidable) if it is computable
as a total 0-1 valued function.

By Church’s thesis, a set A is recursive iff there is an algorithm which, given ~x, determines
whether ~x ∈ A. (The algorithm must halt on all inputs.)

Proposition: The class of recursive subsets of Nn is closed under the operations ∪,∩,
complement.

Proof: This is the same as saying that the class of recursive n-ary relations is closed under
the Boolean operations ∧,∨,¬ (see Lemma, page 62). �

Proposition: If R(~x, y) is a recursive relation, and f(~x) is a total computable function,
then the relation S(~x) = R(~x, f(~x)) is a recursive relation.

Proof:. The class of total computable functions is closed under composition. �

Note that the assumption that f is total is necessary in the above proposition, since by
definition a recursive relation must be a total 0-1 valued function.

We are interested in proving that certain sets are not recursive. The standard example is
the diagonal halting set K.

Notation: K = {x | {x}1(x) 6=∞}

Recall that {x}1 is the unary function computed by the program (coded by) x . Thus

K(x) =

{
1 (true) if program x halts on input x
0 (false) otherwise

Note that K is a version of the famous “halting problem”, originally formulated by Alan
Turing in the context of Turing machines.

Theorem: K is not recursive.

Proof: The proof is a combination of a “diagonal argument” and a reduction. First the
diagonal argument.

Let φn(x) = {n}1(x) for n = 0, 1, 2, ... That is, φn is the (partial) function of one variable

58

computed by program {n}. Thus φ0, φ1, ... is an enumeration of all computable functions
of one variable. We can list all values of all these functions in an infinite table, whose n-th
row is a list of the successive values φn(0), φn(1), ... of the function φn. We now define a
“diagonal function” D(x) by making D(n) defined iff φn(n) is undefined. That is,

D(x) =

{
0 if x 6∈ K
∞ if x ∈ K

The list of values of D(0), D(1), ... can be obtained by going down the main diagonal of the
above table and changing each ∞ to 0 and changing each defined value to ∞. Thus it is
clear that this list of values cannot coincide completely with any row in the table, because
the n-th value in the list disagrees with the n-th row at position n. It follows that D is not
a computable function.

More formally, we can prove that D is not computable by contradiction. If D is computable,
then D = {e}1 for some e ∈ N. But then

{e}1(e) = D(e) =

{
0 if e 6∈ K i.e. {e}1(e) =∞
∞ otherwise i.e. {e}1(e) 6=∞

i.e. {e}1(e) is defined iff {e}1(e) is not defined, a contradiction. Hence D is not computable.

Now comes the reduction: We can reduce the computation of D to the computation of K, so
that if K is computable then D is computable. But we just showed that D is not computable,
so K is not computable.

Reducibility

Definition: Suppose A,B ⊆ N. Then A ≤m B (A is many-one reducible to B) iff there is
a total recursive function f : N→ N, such that x ∈ A⇔ f(x) ∈ B, for all x ∈ N.

Note that ≤m is similar to the notion of ≤p of polynomial time reducibility. The difference
is that for the latter we require that the function f be polynomial time computable.

Proposition: The relation ≤m is transitive. That is, if A ≤m B and B ≤m C then A ≤m C.

Exercise 2 Prove the above proposition.

Proposition: If A ≤m B and B is recursive then A is recursive

Proof: A(x) = B(f(x)). �

Application: To show that B is not recursive, it suffices to show that K ≤m B.

Example: Let H = {x | {x}1(0) 6=∞} Thus x ∈ H iff program {x} halts on input 0.

Claim: H is not recursive

59

Proof: It suffices to show K ≤m H. Thus we want a total computable f so x ∈ K iff
f(x) ∈ H. That is, {x}1(x) 6=∞ iff {f(x)}1(0) 6=∞

What is the program {f(x)}? Program {f(x)} on any input y simulates program {x} on
input x.

From the point of view of the program {f(x)}, x is a constant; say x = x0. Since there is an
easy algorithm that transforms x0 to the program {f(x0)}, it follows from Church’s thesis
that the function f is computable (i.e. recursive).

Exercise 3 Show that the following sets are not computable. Note that it suffices to show
that the complementary set is not computable, since a set A is computable iff Ac is com-
putable.

A1 = {x | {x}1(5) =∞}
A2 = {x | ran({x}1) = N}, where ran(f) = f(N) = range of f
A3 = {x | dom({x}1) is finite}, where dom(f) = {x | f(x) 6=∞} is the domain of f .

Rice’s Theorem

It turns out that the noncomputability of all of the above examples, and many more, follow
from a single result, known as Rice’s Theorem. We say that A ⊆ N is a function index set
if for all e ∈ A, if {e}1 = {e′}1 then e′ ∈ A. Thus if A contains a code for a program that
computes a unary function φ, then A must contain codes for all programs that compute φ.
We can think of a function index set as a set of computable functions rather than a set of
numbers.

Note that each of the three sets A1, A2, A3 in the above exercise is a function index set.

Theorem: (Rice) If A is a function index set and A 6= ∅ and A 6= N then A is not
computable.

Exercise 4 Prove Rice’s Theorem. Use the same techniques that you used to prove A1, A2, A3

are not computable. (Hint: First consider the case in which no code for the empty function
Empt (which has empty domain) is in A.)

Exercise 5 You may use Church’s Thesis in answering the following questions. That is, to
justify that a particular function is computable is suffices to give an algorithm for computing
it.

Define the relation R(x, y) by the condition R(x, y) holds iff at some time during the com-
putation of program {x} on input 0, the first |y| symbols of the tape contain y. Prove that
R(x, y) is not recursive.

Recursively Enumerable Sets

60

Definition: If A ⊆ Nn then A is r.e. (recursively enumerable (r.e.), or semidecidable or
semidecidable) if there exists a recursive relation R ⊆ Nn+1 such that

~x ∈ A⇔ ∃yR(~x, y), for all ~x ∈ Nn

Intuition: Let n = 1. A is r.e. iff there is an algorithm for enumerating members of A in
some order. The following Lemma justifies this intuition.

Intuition: Recall that A is recursive (decidable) if there is a TM M that always halts and
such that for all x ∈ A, M halts and outputs 1 (accepts), and for all x 6∈ A, M halts and
outputs 0 (rejects). In contrast, A is r.e. if there is a TM M such that for all x ∈ M , M
halts and outputs 1 (accepts), and for all x 6∈M , M either does not halt, or halts and does
not output 1 (halts and does not accept). Thus any A that is recursive is also r.e., but the
converse does not necessarily hold.

Lemma: If A ⊆ N then A is r.e. iff A = ∅ or A = ran(f) for some total computable
f : N→ N.

If A = ran(f), then A = {f(0), f(1), f(2) · · · }. Hence there is an algorithm for enumerating
A, namely compute f(0), f(1), f(2) · · · . It is important that f be total in order for this
algorithm to work. Notice that this does not necessarily enumerate A in order, and there
may be repetitions.

Proof of Lemma: ⇒: Suppose x ∈ A ⇔ ∃yR(x, y). We want a total computable f so
A = ran(f). Idea: Enumerate all pairs 〈x, y〉. We may assume A 6= ∅, so let a ∈ A. First
we define a total computable function F (x, y) of two variables whose range is A:

F (x, y) =

{
x if R(x, y) holds
a otherwise

Then A = ran(F). To convert F to a unary function f with the same range, we fix things so
that f(2x3y) = F (x, y). Explicitly, define f(z) = F ((z)0, (z)1), where (z)x is the exponent
of prime px in the prime decomposition of z Thus f is a total computable unary function
whose range is A.

Proof of direction⇐: Suppose A = ran(f), where f : N→ N is a total computable function.
Define the relation R(x, y) by

R(x, y) = (x = f(y))

Then R(x, y) is recursive. Now it is clear that

x ∈ A⇔ ∃y(x = f(y))⇔ ∃yR(x, y) �

The technique used in the first half of the above proof of enumerating A by, in effect,
enumerating all pairs (x, y) is called dovetailing.

Remark: Every recursive set is r.e. Given a recursive set A, simply define the relation R
by R(x, y)⇔ x ∈ A. Then x ∈ A⇔ ∃yR(x, y), so A is r.e.

61

The converse is false, as we shall soon see.

Analogy: P is to NP as the recursive sets are to the r.e. sets. In fact, one way to define
NP is to modify our definition of r.e. by requiring the relation R(x, y) be polynomial time
computable (instead of just recursive), and by putting a suitable bound on the quantifier
∃yR(x, y). Then P is a subset of NP just as every recursive set is r.e. However, unlike P vs
NP we can prove that not all r.e. sets are recursive.

Theorem: K is r.e but not recursive.

Proof: Recall that K = {x | {x}1(x) 6=∞}. We have already shown that K is not recursive,
so it suffices to show that K is r.e. We will modify our Universal Turing machine, MU , as
follows. On input x, we construct {x}, the program encoded by x, and simulate {x} on
input x. If the simulation halts and outputs 1, then we halt and output 1; if the simulation
halts and does not output 1, then we also halt and output 0, otherwise, if the simulation
never halts, then our program also never halts.

Exercise 6 We say that a function f : N→ N is nondecreasing if

x ≤ y ⇒ f(x) ≤ f(y), for all x, y ∈ N

Prove that a set A ⊆ N is recursive iff A = ∅ or A is the range of some total computable
unary nondecreasing function f . Give a careful proof, without using Church’s thesis. Hint:
For the ⇐= direction, consider separately the case in which A is finite.

Definition: If f(~x) is a (partial) function, then graph(f) is the relation

Rf (~x, y) = (y = f(~x))

If f is a total computable function, then graph(f) is a recursive relation, since in general the
substitution of a total computable function into a recursive relation (in this case the relation
(y = z) is always a recursive relation (by the second Proposition, page ??). However, if f
is computable but not total, then graph(f) is not necessarily recursive. As an example, let
f(x) = 0 if program {x} halts on input x, and otherwise f(x) is undefined. Thus

x ∈ K ⇔ (x, 0) ∈ graph(f)

Thus graph(f) is not recursive, since otherwise K would be recursive.

Although graph(f) is not always recursive for computable functions f , it is r.e. In fact, there
is a converse:

Theorem: Suppose f is a (partial) n-ary function. Then f is computable iff graph(f) is
recursively enumerable.

Exercise 7 Prove the above theorem.

62

Theorem A is recursive iff both A and Ac are r.e.

Proof: ⇒: Recursive sets are r.e., and complements of recursive sets are recursive.

⇐: Assume A and Ac are both r.e. Then there are recursive relations R and S such that
x ∈ A iff ∃yR(x, y) and x ∈ Ac iff ∃yS(x, y).

Here is a decision procedure to determine whether x ∈ A:

63

for y : 0 · · ·∞
If R(x, y) then output yes (x ∈ A) exit
end if
If S(x, y) then output no (x 6∈ A) exit
end if

end for

We know this terminates.

Application: K is r.e. but not recursive. Therefore by the above theorem, Kc is not r.e.

Proposition: Suppose A,B ⊆ N. If A ≤m B and B is r.e. then A is r.e.

Exercise 8 Prove the above proposition.

Application: To show A is not r.e., it suffices to show Kc ≤m A.

Exercise 9 Show that the following sets are not r.e. Note that

A ≤m B ⇔ Ac ≤m Bc

A1 = {x | {x}1(5) =∞}
A2 = {x | ran({x}1) = N}
A3 = {x | dom({x}1) is finite}

Also show that Ac
2 and Ac

3 are not r.e. In fact, it is easier to show Ac
2 is not r.e. than to

show A2 is not r.e. To show A2 and Ac
3 are not r.e. use the method suggested above (reduce

Kc to them).

r.e. completeness: We say that a set A ⊆ N is r.e. complete iff

(i) A is r.e., and
(ii) for every set B ⊆ N, if B is r.e. then B ≤m A.

The notion of NP-completeness was taken from the above definition.

It turns out that every “natural” r.e. set A ⊆ N that has been shown to be not recursive is
in fact r.e. complete.

Exercise 10 Show that K is r.e. complete.

Undecidable combinatorial problems

64

So far all of our examples of nonrecursive sets have referred directly or indirectly to programs,
as for example the set K. However there are many known nonrecursive sets which arrive from
combinatorial problems which on the surface appear to have nothing to do with computation.
An example is the set TG of all context-free grammars G over some alphabet Σ such that
L(G) = Σ∗. (Technically TG consists of all numerical codes for such grammars G, where we
assign a numerical code to a grammar in the same way as we assigned codes to RM programs.)
The method for proving that TG is nonrecursive is the same as for examples above; namely
reduce Kc to TG. See for example “Elements of the Theory of Computation” by H. R. Lewis
and C. H. Papadimitriou or “Formal Languages and their Relation to Automata” by J. E.
Hopcroft and J. D. Ullman for this and other examples.

The crowning achievement for showing sets are not recursive is the following.

Hilbert’s 10th Problem (posed 1900, solved 1970)

Hilbert’s problem: Find a procedure to determine whether a Diophantine equation p(~x) =
q(~x) has a solution in N.

Definition: A Diophantine equation is one of the form p(~x) = q(~x), where p and q are
multivariate polynomials with natural number coefficients.

Examples are 3x3yz5 + 2y4 + 5 = 0, and (x + 1)n + (y + 1)n = zn, for any fixed positive
integer n.

Definition: A Diophantine relation R(~x) is one of the form

∃y1 · · · ∃ym (p(~x, y, . . . , ym) = q(~x, y1, . . . , ym))

where p and q are polynomials as above.

MRDP Theorem (1970) Every r.e. set is Diophantine.

Corollary: There is no algorithm for Hilbert’s 10th problem.

Proof of Corollary: Choose any set, say K, which is r.e. but not recursive. Since K is
r.e., it follows from the MRDP Theorem that K has a representation of the form

a ∈ K ⇔ ∃y1 · · · ∃ym(p(a, y1 · · · ym) = q(a, y1 · · · ym))

If there were an algorithm for Hilbert’s 10th, then we could determine membership in K. �

The proof of the MRDP Theorem is beyond the scope of this course. For a readable proof,
see “Proof of recursive unsolvability of Hilbert’s Tenth Problem” by Jones and Matiyasevich,
Amer. Math. Monthly vol. 98 (1991) 689-709.

65

