
CSC 438F/2404F Notes (T. Pitassi) Fall, 2019

Computability Theory

This section is partly inspired by the material in “A Course in Mathematical Logic” by Bell
and Machover, Chap 6, sections 1-10.
Other references: “Introduction to the theory of computation” by Michael Sipser, and “Com-
putability, Complexity, and Languages” by M. Davis and E. Weyuker.

Our first goal is to give a formal definition for what it means for a function on N to be com-
putable by an algorithm. Historically the first convincing such definition was given by Alan
Turing in 1936, in his paper which introduced what we now call Turing machines. Slightly
before Turing, Alonzo Church gave a definition based on his lambda calculus. About the
same time Gödel, Herbrand, and Kleene developed definitions based on recursion schemes.
Fortunately all of these definitions are equivalent, and each of many other definitions pro-
posed later are also equivalent to Turing’s definition. This has lead to the general belief that
these definitions have got it right, and this assertion is roughly what we now call “Church’s
Thesis”.

A natural definition of computable function f on N allows for the possibility that f(x) may
not be defined for all x ∈ N, because algorithms do not always halt. Thus we will use the
symbol ∞ to mean “undefined”.

Definition: A partial function is a function

f : (N ∪ {∞})n → N ∪ {∞}, n ≥ 0

such that f(c1, ..., cn) =∞ if some ci =∞.

In the context of computability theory, whenever we refer to a function on N, we mean a
partial function in the above sense.

Definitions:
Domain(f) = {~x ∈ Nn | f(~x) 6=∞}

where ~x = (x1 · · ·xn) We say f is total iff Domain(f) = Nn (i.e. if f is always defined when
all its arguments are defined).

Turing machines

A Turing Machine is specified by a 7-tuple, M = {Q,Σ,Γ, δ, q1, B, {q2}}, where Q =
{q1, q2, . . . , qk} is a finite set of states, Σ is a finite set consisting of the input alphabet,
including the two elements 0 and 1; Γ is a finite set consisting of the tape alphabet, and such
that Σ ⊆ Γ; q1 is the designated start state, q2 is the designated halt state, and B ∈ Γ is a
special blank symbol not in Σ.

1

The transition function, δ, is a function from Q× Σ to Q× Γ× {L,R}.

Σ∗ denotes the set of all finite length strings over Σ. Let x ∈ Σ∗. We visualize a Turing
machine M over Σ on input x as consisting of an tape consisting of an infinite sequence of
cells , c0, c1, . . . ,. There is a tape head which points to one cell of the tape, and at every
point in time, the Turing machine is in one state qi ∈ Q. Each cell of the tape contains an
element from Γ. M on input x operates as follows. Initially M is in the start state q1, and
the infinite tape consists of x written on the first |x| consecutive cells, followed by all blank
symbols (B). At every time step, M makes one transition, according to δ. If M is in state
q and the tape head is currently reading symbol s at time t, and δ(q, s) = (q′, s′, L/R), then
at time t + 1, the new state is q′, the symbol s is replaced by s′, and the tape head moves
left/right one cell. (If the tape head is already at the leftmost position, then on a L move,
the head stays in place.) The computation terminates if ever the head of M is pointing at
the first cell, and the current state is the final state, q2. At this point in time, if the first cell
contains the symbol 1, then M on x accepts, and otherwise, M on x does not accept.

A Turing Machine accepts a language, L ⊆ Σ∗ if and only if for every x ∈ L, M on x accepts,
and for every x 6∈ L, M on x does not accept.

We can describe the computation of M on x at time t by a configuration. Let q be the
leftmost tape cell such that all cells to the right of q contain the blank symbol, B. Then
the configuration consists of the contents of the tape up to cell q, plus the current state,
q, plus the location, i, of the tape head. We will represent this information by the string
s1, s2, ..., (q, si), si+1, . . . , sq, where s1, . . . , sq are the contents of the tape cells up to cell q,
and where q is the current state. (The location of q within the string tells us the location of
the head.) The initial configuation of M on x is therefore the string (q1, x1), x2, . . . , xn−1, xn.

The computation of M on x is described by a sequence of configurations, c1, c2, . . ., where
c1 is the initial configuration of M on x, and such that each ci follows from the previous
configuration ci−1 by applying the transition function δ. If M accepts x, then this sequence
of configurations is finite, and the last configuration begins with the sequence (q2, 1). If M
does not accept x, then either the sequence is finite, and the last configuration begins with
the sequence (q2, y), for some y 6= 1, or the sequence of configurations is infinite.

If M accepts x in m steps, we will visualize the corresponding sequence of configurations as
a tableaux, or m− by−m matrix, where the first row of the matrix is the start configuration,
and row i is the configuration at time t.

Turing machines can also be defined to compute a function (as opposed to accepting a
language) as follows. Let f be a k-ary partial function from domain D to range R. We can
encode a k-tuple a1, . . . , ak by a string x, where x consists of the concatenation of a1, a2,
..., separated by blank symbols. Let M be a Turing Machine. Suppose that M on input x
halts. Then the output of M on input x is the string y, where y is the contents of the tape
up to and including the cell pointed to by the tape head. M computes f if the following
conditions hold. (1) on all inputs x in the domain of f , M halts and outputs f(x); (2) on
all inputs x not in the domain of f , M does not halt on x.

2

Let R be a k-ary relation. Similarly we will encode k-tuples by strings x. M accepts R if
for all k-tuples x ∈ R, M on x halts and outputs 1, and for all x 6∈ R, M on x either does
not halt, or halts and does not output 1.

Our form of Church’s Thesis:
Every algorithmically computable function is TM-computable.

Here the notion “algorithmically computable” is not a precise mathematical notion, but
rather an intuitive notion. It is understood that the algorithms in question have unlimited
memory. In the case of register machines, this means that each register can hold an arbitrarily
large natural number.

Church’s Thesis will be discussed further at the end of this section, after we have given many
examples of computable functions.

Exercise 1 Write Turing machine programs to compute each of the following functions:

f1(x) = x+ 1
f2(x, y) = x · y

Be sure to respect our input/output conventions for TM’s.

Let R ⊆ Nn. Thus R is an n-ary relation (predicate). We will think of R as a total 0-1
valued function as follows: R(~x) = 0 iff ~x ∈ R, and R(~x) = 1 otherwise.

Encoding Turing Machines by Numbers

We want to associate a number with each Turing machine over the alphabet Σ = {0, 1}.
Here is one way to do this.

Our convention is that the states of a TM are always called Q = {q1, q2, . . . , qn}, where q1
is always the start state, and q2 is always the halt state. Similarly, assume that the tape
symbols Σ = {x1, x2, . . . , xk} where x1 = 0 and x2 = 1. Let ”left” be denoted by D1 and
let ”right” be denoted by D2. Then we represent a the transition δ(qi, xj) = (q(k, xl, Dm)
by 0i10j10k10l10m. The code for M is: 111code111code211 . . . 11coder111, where codei is the
code for one of the possible transitions.

Example Let M = (Q = {q1, q2, q3},Σ = {0, 1},Γ = {0, 1, B}, δ, q1, B, {q2}), where we have
the following transitions and their corresponding codes:

• δ(q1, 1) = (q3, 0, R), c1 = 0110210310100

• δ(q3, 0) = (q1, 1, R), c2 = 031010102100

• δ(q3, 1) = (q2, 0, R), c3 = 03102102102100

• δ(q3, B) = (q3, 1, L), c4 = 0310310310210

3

Thus M is encoded by the string 111c111c211c311c4111, and the pair (M, 1011) is encoded
by the string 111c111c211c311c41111011. Note that given an encoding < M,w >, we can
recover the associated Turing machine M and string w.

A Universal Turing Machine

A Universal Turing machine U takes as input a pair < M,w > where M encodes a Turing
machine, TM over Σ = {0, 1} and w is a string over {0, 1}. U accepts < M,w > if and only
if the machine TM on input w accepts. Note that if TM on w does not accept, then U may
not halt on input < M,w >.

The language accepted by U is LU . LU is the set of strings < M,w > such that M encodes
a TM, TM and TM accepts w.

LU is recursively enumerable (r.e.). That is, there is a machine U that takes as input strings
< M,w > and such that: (a) If < M,w > does not encode a valid Turing machine, Tm and
string w, then U does not accept < M,w >. (b) otherwise if TM accepts w then U halts on
< M,w > and accepts; (c) otherwise if TM does not accept w, then U does not accept w.

We will describe a 3-tape TM, U . First U checks to see if < M,w > is a valid encoding of a
Turing machine, TM and input w. If not, then U halts and does not accept. Otherwise, on
input < M,w >, U will simulate the computation of TM on w. The first tape of U contains
the code of TM . The second tape of U will contain the contents of the tape of TM TM as it is
being simulated on input w. And finally, the third tape of U will contain state information.

• Initially, < M,w > is on tape 1.

• Check tape 1 to make sure it is a valid input. That is, valid codes for M begin and
end with ”111” and each code codei is separated by 11, and the transitions are of the
form 0i10j10k10l10m, where m = 1 or 2.

• Initialize tape 2 to contain $w.

• Initialize tape 3 to contain $0 (this is the start state, q1, in unary).

• Initialize tape 1 to hold 11$code111code211 . . . 11coder111

• Repeat: (a) If tape 3 holds $000 (rejecting state q3, halt and reject; (b) if tape 3 holds
$00 (accept state q2), halt and accept; (3) otherwise let xj be the symbol scanned by
head 2 and let 0i be the contents of tape 3. Scan tape 1 from $ to 111, looking for a
string beginning with 110i10j1. If no such string is found, halt and reject. If such a
string is found, say it is 110i10j10k10l10m. Put 0k on tape 3, and write xl on the tape
cell scanned by head 2, and then move that head in direction Dm one cell.

Notation: {z} = the program P s.t. #(P) = ẑ

Thus {z} =

{
the program P such that #(P) = z if P exists
Λ (empty program) otherwise

4

Kleene T predicate (Important)

Definition: For each n ≥ 1 we define the n+2-ary relation Tn by the condition Tn(z, x1, · · · , xn, y)
holds iff y codes the computation of program {z} on input ~x. For n = 1 we sometimes write
T instead of T1.

Theorem: (Kleene) For each n ≥ 1 Tn is a recursive relation.

Proof: Tn(z, ~x, y) holds iff y codes a computation (u0, ..., ut), where the initial state u0
satisfies

u0 = p00p
x1
1 p

x2
2 · · · pxn

n

and for all i < t
ui+1 = Nex(ui, z)

and halt(ut, z) (the last state is halting) and for all i < t

¬halt(ui, z)

(no intermediate state is halting).

More formally, setting t = lh(y) . 1 (so t = max i ≤ y[pi|y])

Tn(z, ~x, y) = [(y)0 = px1
1 p

x2
2 · · · pxn

n {initial state}
∧∀i < t[(y)i+1 = Nex((y)i, z)]
∧halt((y)t, z) {last state is halting}
∧∀i < t¬halt((y)i, z) {no intermediate state is halting} �

Output function

We define the output function U(y) to be the contents of register R1 in the final state of the
computation coded by program {y}.

Thus U(y) = ((y)lh(y) . 1)1, and hence U is primitive recursive.

Notation: {z}n is the n-ary function computed by program {z}

Kleene Normal Form Theorem: There is a primitive recursive function U and for each
n ≥ 1 a primitive recursive predicate Tn such that

{z}n(x1, . . . , xn) = U(µyTn(z, ~x, y))

Proof: Immediate from the definitions above. Note: The least y is the only y satisfying the
condition Tn(...). Also note that y will not exist if the program doesn’t halt, so {z}n(~x) is
undefined in this case.

Corollary: Every computable function is recursive, and can be obtained using at most one
application of µ.

5

Universal Functions

Notation: Φn(z, ~x) = {z}n(~x)

Φn is called a universal function, since it codes every computable function of n variables, as
z varies.

Corollary: The universal function Φn is recursive (and hence computable), for n = 1, 2, ...

A program computing Φn is called an interpreter.

The function Φ1 is universal for the set of all unary computable functions. Thus if we define
φi(x) = Φ1(i, x) then

φ0, φ1, ...

is an enumeration of all (partial) unary computable functions. It turns out that it is essential
to include nontotal functions in order to get a computable universal function.

Theorem: There is no computable universal function for the set of all total computable
unary functions.

Proof: Let f0, f1, ..., be a list of all total computable unary functions, in any order, possibly
with repetitions. Let

F (z, x) = fz(x)

We will show that F is not computable. This is because if F were computable, then the
“diagonal” function

D(x) = F (x, x) + 1 = fx(x) + 1

would also be a total computable unary function. But then D must be in the list f0, f1,
That is, D = fe for some e. But then fe(e) = D(e) = fe(e) + 1, a contradiction. Hence F is
not computable.

Exercise 2 Prove that there is no computable universal relation RU(x, y) for all computable
unary relations.

Exercise 3 Let A(n, x) = An(x) be Ackermann’s Function (page ??). Define

UP (z, x) = U(min y < (A((z)0, x) + z) T ((z)1, x, y))

where T (z, x, y) is the Kleene T -predicate. (See page ?? for the notation (z)x.) (Compare
the definition of UP with the Kleene Normal Formal Theorem. Use the facts stated about
Ackermann’s function together with results above to prove the following.

(a) Prove that UP is a total computable function.

(b) Prove that for each e ∈ N, the unary function ge(x) = UP (e, x) is primitive recursive.

6

(c) Prove that for each unary primitive recursive function f(x) there is e ∈ N such that
f = ge (where ge is defined in part (b)). Use the Kleene Normal Form Theorem, and the
following strengthening of the Theorem, page ??:

Fact: Every primitive recursive function f(~x) is computable by a RM program P such that
the function CompP(~x) is primitive recursive, where

CompP(~x) is the number coding the computation of P on input ~x

(d) Give a diagonal argument showing that UP is not primitive recursive.

Exercise 4 Use a diagonal argument to prove that

H(x) = µyT (x, x, y)

has no total computable extension. That is, show that if the function BIG(x) is total and
agrees with H(x) whenever H(x) is defined, then BIG(x) is not computable.

Church’s Thesis: Every “algorithmically computable function” is computable (i.e. com-
putable on a RM).

This statement cannot be proved because it is not precise. But it is a strong claim about the
robustness of our formal notion of computable function. In general, if we give an informal
algorithm to compute a function, then we can claim that it is computable, by Church’s
Thesis.

Alonzo Church proclaimed this famous “thesis” in a footnote to a paper in 1936. Actu-
ally, he did not talk about RM’s, but rather claimed that every algorithmically computable
function is definable using the λ-calculus which he had invented. A little later Alan Turing
published his famous paper defining what are now called Turing machines, and argued, more
convincingly than Church, that every algorithmically computable function is computable
on a Turing machine. (Hence “Church’s Thesis” is sometimes called the “Church-Turing
thesis”.) Turing proved that Church’s λ-definable functions coincide with the Turing com-
putable functions. It turns out that both of these coincide with the functions computable on
a RM, which we have shown coincide with the recursive functions. In fact, many other for-
malisms for defining algorithmically computable functions have been given, and all of them
turn out to be equivalent. This robustness is a powerful argument in favour of Church’s
thesis.

7

