Review of Definitions Language of arithmetic $J_{A} = 20, s, t, \cdot; = 3$ € = all Z_A-sentences TA > 2 A ∈ Q. / IN = A 3 True Anthmetic A theory Z is a set of sentences (over ZA) closed under logical consequence -We can specify a theory by a subset of sentences that logically implies all sentences in Z Σ is <u>consistent</u> iff $\Phi_{S} \neq \Sigma$ (iff $\forall A \in \Phi_{O}$, either A or $\uparrow A$) Not in Σ) Z is complete iff Z is consistent and VA either A or 7 A is in Z

Z is sound iff Z STA

Let M be a model/structure over LA Th $(\mathfrak{M}) = \{A \in \overline{\Phi}_{\mathcal{B}} \mid \mathfrak{M} \models A\}$ Th (M) is complete (for all structures M) Note TA = Th(IN) is complete, consistent, & sound VALID = ZAE Do | FAZ - smallest theory

Let Z be a theory Z is <u>axiomatizable</u> if there exists a set $\Gamma \leq \geq$ such that O Γ is recursive $O \geq Z = E A \in \Phi_0 | \Gamma \models A = E$

Theorem Z is axiomatizable iff Z is n.e. (P. 76 of Notes)

Incompleteness Theorem of TA: TA is Not axiomatizable In other words, any sound theory Z (sound: Z < TA) that is r.e. is a strict subset of TA PROOF: K= {x | {x} | half: }

MAIN For all x there is a sentence
$$F_x$$
 (over J_A)
LEMMA:
such that $x \in K^c$ iff $F_x \in TA$

Incompleteness Theorem of TA: TA is Not axiomatizable In other words, any sound theory Z (sound: ZETA) that is r.e. is a strict subset of TA PRODE:

MAIN
LEMMA: For all x there is a sentence
$$F_x$$
 (over \mathcal{J}_A)
such that $x \in K^c$ iff $F_x \in TA$
A
Need to show we can reason about TM computations
with formulas in \mathcal{J}_A

.

(FIRST) INCOMPLETENESS THEOREM

MAIN
LEMMA: For all x there is a sentence
$$F_x$$
 (over J_A)
such that $x \in K^c$ iff $F_x \in TA$

<u>Defn</u> A predicate is arithmetical if it can be represented by a formula over Z_A

EXISTS-DELTA THEOREM (pp 68-71):

Every r.e. predicate/language is arithmetical

... the complement of an n.e. Language is an thrmetical so in particular K^c is arithmetical

Every R.e. predicate is arithmetical Definition Let so=0, si=so, si=so, etc. Let $R(x_1...x_n)$ be an n-ary relation $R = IN^n$ Let $A(x_1,...,x_n)$ be an \vec{a}_A formula, with free variables $x_1,...,x_n$ $A(\vec{x})$ represents R iff $\forall \vec{a} \in IN^n \left[R(\vec{a}) \Leftrightarrow N \models A(s_a, s_{a_2}...s_{a_n}) \right]$ Example REIN RECAEIN | a is even } $A(x) \stackrel{d}{=} \exists y (y + y = x) \quad \exists y \leq x (y + y = x)$ $R(3) = talsc and IN \not\in A(ssso) = \exists y (y + y = ssso)$ $R(4) = true, and IN \models A(ssso) = \exists y (y + y = sssso)$

Every R.e. predicate is arithmetical
Definition Let So=0, Si=SO, Sz=SSO, etc.
Let R(X,..Xn) be an n-ary relation R = INⁿ
Let A(X,...,Xn) be an d_A formula, with free variables X,...,Xn
A(X) represents R iff
$$\forall \bar{a} \in IN^n$$
 R(\bar{a}) $\Leftrightarrow N \models A(S_{e_1}, S_{e_2}...,S_{e_n})$
R is arithmetical iff there is a formula
A $\in d_A$ that represents R
Exists-Delta-Theorem every r.e. relation
is arithmetical. In fact every r.e. relation
is represented by a $\exists A_0$ d_A -formula.

30, Formulas

$$t_1 \leq t_2$$
 stands for $\exists w(t_1 + w = t_2)$
 $\exists z \leq t A$ stands for $\exists z (z \leq t \land A)$ Bounded
 $\forall z \leq t A$ stands for $\forall z (z \leq t \supset A)$ Bounded
 $\forall uantifiers$
Detinition A formula is a A_0 -formula if it has
the form $\forall z_1 \in t_1 \exists z_2 \leq t_2 \forall z_3 \leq t_3 \dots \exists z_k \leq t_k A(\vec{x}, \vec{z})$
Bounded Quantifiers No
quantifiers
Definition A relation $R(\vec{x})$ is a A_0 -relation iff
some A_0 -formula represents it

$$\left(A(x) \stackrel{d}{=} sq < x \land \forall z_1 \leq x \forall z_2 \leq x (x = z_1 \cdot z_2) (z_1 = 1 \lor z_1 = x)\right)$$

$$\forall z_1 \in \times \forall z_2 \in \mathbf{X} \left((so < \mathbf{x}) \land (\mathbf{x} = z_1, z_2) \circ (z_1 = |\mathbf{x}| + z_2, \mathbf{x}) \right)$$

30, Formulas

$$t_1 \leq t_2$$
 stands for $\exists W(t_1 + W = t_2)$
 $\exists z \leq t A$ stands for $\exists z (z \leq t \land A)$ Bounded
 $\forall z \leq t A$ stands for $\forall z (z \leq t \supset A)$ Pountifiers
Definition A formula is a A_0 -formula if it has
the form $\forall z \in t, \exists z \geq t_2 \forall z \leq t_3 ... \exists z \leq t_k A(\vec{x}, \vec{z})$
Definition A $\exists \Delta_0$ formula has the form $\exists \forall B(\vec{x}, \vec{y}, \vec{z})$
 Δ_0 formula
Definition A relation $R(\vec{x})$ is a Δ_0 -relation iff
some Δ_0^- formula represents it
Definition $R(\vec{x})$ is a $\exists \Delta_0^-$ formula
 $P(\vec{x})$ is a $\exists \Delta_0^-$ relation iff some $\exists \Delta_0^-$ formula
 $P(\vec{x})$ is a $\exists \Delta_0^-$ relation iff some $\exists \Delta_0^-$ formula

30 Theorem

Main Lemma Let $f: IN^n \rightarrow IN$ be a total computable function. Let $R_f = \{(\vec{x}, y) \in IN^{n+1} \mid f(\vec{x}) = y\}$ also called Then R_f is a $\exists A_p$ -relation.

Main Lemma Let
$$f: iN \rightarrow iN$$
 be total, computable
Then $R_{f} = \{\hat{x}, \hat{y}\} \mid f(\hat{x}) = y\}$ is a $\exists d_{0}$ relation

Proof of $\exists A_{0}$ Theorem from Main Lemma
Let $R(\hat{x})$ be an r.e. relation $\{e \times ample \ R(x)\}$
Then $R(\hat{x}) = \exists y S(\hat{x}, y)$ where S is recursive $K(x) = \exists y S(x, y)$
Since S is recursive, $f_{s}(\hat{x}, y) = \{i \text{ if } (\hat{x}, y) \in S \\ 0 \text{ otherwise} \\ Ts \text{ total computable} \\ By main lemma $R_{f_{s}}$ is represented by a $\exists d_{0}$ relation
So $R(\hat{x}) = \exists y \exists z B$ is represented by a $\exists d_{0}$ relation
 $R_{f_{s}}$$

Can describe k by

$$K = . \exists y \xrightarrow{A(x,y)} + A \cdot u + he recussive relations
 $\exists z F(x,y,\overline{z}) + had accepts iff y is the tableaux
 $\exists z F(x,y,\overline{z}) + a \wedge u + he recussive relations
 $\exists z f(x,y,\overline{z}) + had accepts iff y is the tableaux
a M Sx3 when run on uput x
 d_0 and last config Q y haits$$$$$

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

We want
$$A(x, y)$$
 to be true iff
 M_{ξ} on injust x halts & outputs y
 $\exists m (runtime q, M_{\xi}, mx)$
 $iff \exists tableaux T$
 m^{2} cells
 $f(x, 0)$
 $f(x,$

4th condition can be checked locally

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

·WARNUP: if exponentiation from xY were in LA, this would be easier.

encode 57, 3009, 205, 4, 5 by

$$a^{57} \cdot 3^{3009} \cdot 5^{205} \cdot 7^{4} \cdot 11^{5}$$

(ie ît number x sequence encoded by P_{i}^{\times} , where
 $P_{i} = i^{4}$ smallest prime number

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

·WARNUP: if exponentiation from xY were in LA, this would be easier.

• But we need to encode sequences using only +, •, s * gödel's & function does this using magic of chinese remainder theorem

Proof of Main Lemma (see pp 10-71)
Definition
$$\beta$$
-function
 $\beta(c, d, i) = rm(c, d(i+1)+1)$ where $rm(x, y) = x \mod y$
Lemma 0. $\forall n, r_0, r_1, ..., r_n = \exists c_i d$ such that
 $\beta(c, d, i) = r_i$ $\forall i, 0 \le i \le n$
 $\Re(c, d, i) = r_i$ $\forall i, 0 \le i \le n$
 $\Re(c, d, i) = r_i$ $\forall i, 0 \le i \le n$

Proof of Main Lemma (see pp 10-71) Definition B-function $\beta(c,d,i) = rm(c,d(i+i)+i)$ where $rm(x,y) = x \mod y$ Lemma O. Vn, ro, ri, ..., rn 3c, d such that $\beta(c,d,i) = r_i \quad \forall i \quad 0 \leq i \leq n$ ERT (chinese Remainder Theorem) Let $f_{0,...,n_i}$, $m_{0,...,m_n}$ be such that $0 \le f_i \le m_i$, $\forall i'_i$, $0 \le i \le n$ and $gcd(m_i, m_j) = 1$ $\forall i'_j$ Then Fr such that $rm(r, M_i) = r_i \quad \forall i, \ 0 \leq i \leq n$

ERT (chinese Remainder Theorem)
Let
$$r_{0,...,r_{n}}$$
, $m_{0,...,r_{n}}$ be such that:
(1) $0 \le r_{c} \le m$; $0 \le c \le n$
(2) $gcd(m_{i},m_{j}) = 1$ $\forall r_{i,j}$, $i \le j$
Then $\exists r$ such that $rm(r, m_{i}) = r_{i}$ $\forall r_{i}$ $0 \le i \le n$
Proof (counting Argument)
• The number of sequences $r_{0} - r_{n}$ such that (1) holds is
 $M = m_{0} \cdot m_{1} \cdot \dots \cdot m_{n}$
• Each r_{i} $0 \le r \le M$ corresponds to a different sequence:
Sec If $\forall i \ rm(r, m_{i}) = r_{i}$ and $\forall i \ rm(s, m_{i}) = r_{i}$
 $Then \ r = s \ (mapping is I-1)$ numbers
 \vdots for every sequence $r_{0} - r_{m}$, some $r \le M$
 m_{0} ways to it

Proof of Main Lemma (see pp 10-71)
Lemma
$$\forall n, r_0, r_1, ..., r_n \exists c_i d \text{ such that}$$

 $\beta(c_i d_i i) = r_m (c_i d(i+i)+i)$
 $\beta(c_i d_i i) = r_m (c_i d(i+i)+i)$
where $r_m(x_i y) = x \mod y$

in a Poweriday The and

 $\frac{P \operatorname{roof} of \operatorname{Lemmalb}}{\operatorname{Let} d = (n + r_0 + \ldots + r_n + 1)!}$ $\operatorname{Let} M_i = d(i+i) + 1$ $\operatorname{Claim} \forall i, j \quad \operatorname{gcd}(m_i m_j) = 1 \quad (\operatorname{proof} \operatorname{Next} \operatorname{page})$ $\operatorname{By} \operatorname{CRT} \exists r = c \quad \operatorname{so} \quad \operatorname{that} \quad \beta(c, d, i) = \operatorname{rm}(c, m_i) = r_i \quad \forall i \in [n]$

Claim Let
$$d = (n + r_0 + r_1 + ... + r_n + i) i$$
, $m_i = d(i+i) + i$
then $\forall i \neq j \neq n$ $gcd(m_i, m_j) = i$
PE suppose p is a prime, and $p[\frac{d(i+i)+i}{m_i}, p[\frac{d(j+i)+i}{m_j}]$
Then $p[\frac{d(j+i)+i}{m_j}] - \frac{(d(i+i)+i)}{m_j}$ (assume $j > i$)
So $p[d(j-i)$

But p cannot divide both d and d(i+i)+i so p|j-iBut then $p \leq j-i < n \leq p/d$ #

Proof of Main Lemma (see pp 10-71)
Lemma 0
$$\forall n, r_0, r_1, ..., r_n \exists c_i d such that
 $\beta(c_i d_i i) = r_i \quad \forall i, 0 \leq i \leq n$
Lemma 1 graph (B) is a A_i relation
We want a D_0 formula $A(z_i z_i z_j z_j z_j)$ s.t.
A is true or inpuls $c_i d_i i_j y$ iff $\beta(c_i d_i i) = y$
 $y = \beta(c_i d_i i) \leq c \mod d(i_i_1) + 1 = y$
 $(a) c = [d(i_{i_1}) + 1] = y$
 $y = \beta(c_i d_i i) \leq [\exists q \leq c (c = q(d(i_{i_1}) + 1) + y) \land y < d(i_{i_1}) + 1]$$$

_

1st Incompleteness Theorem: TA is Not axiomatizable That is, any sound, axiomatizable theory is

incomplete.

-> PA is axiomatizable. So assuming PA as sound, it is incomplete (so there are sentences A such that weither A or 7A is provable from axioms of PA.)

1st Incompleteness Theorem: TA is Not axiomatizable That is, any sound, axiomatizable theory is incomplece.

-> PA is axiomatizable. So assuming PA us sound, it is incomplete (so there are sentences A such that weither A or 7A is provable from axioms of PA.)

r sound and axiomatizable ⇒ ∃A, 7A & r

Tarski Theorem

Define the predicate Truth = N Truth = { m | m encodes a sentence <m} ETA } Then Truth is Not arithmetical. By 30,-Theorem (every ne. set/Language is arithmetical) this implies that Truth is Not ne.

PE of Tarski's 1hm

Let
$$d(n) = sub(n, n)$$

 $\begin{cases} d(n) = 0 \text{ if } n \text{ Not } a \text{ legal encoding.} \\ ow say n encodes A(x). \\ \text{ then } d(n) = n' \text{ where } n' encodes A(s_n) \end{cases}$
Cleanly sub, d are both computable
so by $\exists A_o \text{-theorem } graph(s,b), graph(d) \text{ are orithmetical} \end{cases}$

Proof of Tarski's Thm
Suppose that Truth is arithmetical.
Then define
$$R(x) = \pi \operatorname{Truth} (d(x))$$

Since d , Truth both arithmetical, so is R
Let $R(x)$ represent $R(x)$, and let e be the encoding of $R(x)$
Let $d(e) = R(s_e)$ encodes
"T am fulse"
Then
 $R(s_e) \in TA \iff \pi \operatorname{Truth} (d(e))$ since \tilde{R} represents R
 $\iff \pi R(s_e) \in TA$ by defin q truth
 $\iff R(s_e) \approx TA$ TA contains exactly one of $A, \pi A$
this is a contradiction. Truth is not anithmetical

PEANO ARITHMETIC

P1.
$$\forall x (sx \neq 0)$$

P2. $\forall x \forall y (sx = sy = x = y)$
P3. $\forall x (x + 0 = x)$
P4. $\forall x \forall y (x + sy = s (x + y))$
P5. $\forall x (x \cdot 0 = 0)$
P6. $\forall x \forall y (x \cdot sy = (x \cdot y) + x)$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx))) = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx))) = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx)))] = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx)))] = \forall x A(x)]$

1. M is recursive

Robinson's Anthmetic RA

Axioms
$$\{P1, ..., P6\}$$
 & PA plus P7, P8, P9
P7: ($\forall x \ x \in 0 > x = 0$)
P8: $\forall x \forall y \ (x \in sy > (x \in y \lor x = sy))$
P9: $\forall x \forall y \ (x \in y \lor y \leq x)$
where $t_i \in t_i$ abbreviates $\exists z(t_i + z = t_i)$
FACTS @ RA = PA
@ PA finitely axiomatizable

RA Representation Theorem Every r.e. relation is represented in RA by an Ja, formula Corollaries of RA Representation Theorem

I. RA is Not recursive.
Pf sketch: Kis ne. but Not recursive.
K ne. => it is represented in RA by some Za, formula A
If RA recursive then K recursive. Contradiction

RA Representation Theorem Every r.e. relation is represented in RA by an Ed, formula

Proof idea

2Nd InCOMPLETENESS THEOREM

ZNO Incompleteness Thm

PA cannot prove its own consistency

ZNd I numpleteness Jhm

Formulating consistency in PA B(x,y) be a 30, formula that represents Let Proof (x, y) in RA (and thus also in PA) stands for $B(S_{\#}, y)$ $PA \leftarrow A(s_n) \supset \exists y B(s_{d(n)}, y)$ [recall A(x) represents $\exists y B(d(x), y)$] Then

Formulating consistency in PA B(x,y) be a 30, formula that represents Let Proof (x, y) in RA (and thus also in PA) stands for $B(S_{\#}, y)$ Then $PA \leftarrow A(s_n) \supset \exists y B(s_{d(n)}, y)$ [recall A(x) represents $\exists y B(d(x), y)$] Define con(PA) = - = yB(#0=0,y)

It is left to prove:

A Need to formalize Proof of gödel's Incompleteness Thm in PA. Main step-15 to formalize in PA that every true 30, sentence-15 provable in RA.