Review of Definitions
$\mathcal{L}_{A}=\left\{0_{1} s_{,}+, \cdots ;=\right\} \quad$ Language of arithmetic $\Phi_{0}=$ all \mathcal{L}_{A}-sentences
$T A=\left\{A \in \Phi_{0} \mid \mathbb{N} \vDash A\right\}$ True Anthmetic
A theory \sum is a set of sentences (over \mathcal{Z}_{A}) closed under logical consequence

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ
Σ is consistent iff $\Phi_{0} \neq \Sigma$ (iff $\forall A \in \Phi_{0}$, either A or $1 A$ Not in Σ)
Σ is complete iff Σ is consistent and $\forall A$ either A or $7 A$ is in Σ
Σ is sound iff $\Sigma \leq T A$
Let m be a modu/structure over \mathcal{L}_{A}

$$
T h(m)=\left\{A \in \Phi_{0} \mid \quad m \in A\right\}
$$

Th (an) is complete (for all structures $O M$)
Note $T A=T h(\mathbb{N})$ is complete, consistent, a sound
$V A L I D=\left\{A \in \Phi_{0} \mid \in A\right\} ;$ smallest theory

Let Σ be a theory
Σ is axiomafizable if there exists a set $\Gamma \leq \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem \sum is axiomatizable iff Σ is re. (P. 76 of Notes)

Incompleteness - Introduction

Incompleteness Theorem of TA: TA is not axiomatizable In other words, any sound theory \sum (sound: $\Sigma \subseteq T A$) that is re. is a strict subset of TA sentences in T_{A}

Incompleteness - Introduction

Incompleteness Theorem of TA: TA is not axiomatizable
In other words, any sound theory \sum (sound: $\Sigma \subseteq T A$) that is re. is a strict subset of TA

PROOF:

$$
K=\left\{x \mid\{x\}_{\substack{\text { halts } \\ \text { on } x}}\right\}
$$

MAIN
LEMMA:
For all x there is a sentence F_{x} (over \mathscr{L}_{A}) such that $x \in K^{c}$ iff $F_{x} \in T A$
\therefore If $T A$ is res then K^{c} is re (contradiction):
Assume TA is re. and let M be a TM st. $\mathcal{L}(M)=$ TA
TM [given x : Run M on F_{x} and accept if $M\left(F_{x}\right)$ accepts for $K^{c} L$

Incompleteness - Introduction

Incompleteness Theorem of TA: TA is not axiomatizable
In other words, any sound theory \sum (sound: $\Sigma \subseteq T A$) that is re. is a strict subset of TA
PROOF:

MAIN
LEMMA:
For all x there is a sentence F_{x} (over \mathcal{L}_{A}) such that $x \in K^{c}$ iff $F_{x} \in T A$

Need to show we can reason about TM computations with formulas in \mathscr{L}_{A}
(FIRST) INCOMPLETENESS THEOREM

MAIN
LEMMA:
For all x there is a sentence F_{X} (over \mathcal{L}_{A}) such that $x \in K^{c}$ iff $F_{x} \in T A$

Defn A prediciafe-is arithmetical if it can be represented by a formula over \mathcal{L}_{A}

EXISTS-DELTA THEOREM ($\rho \rho 68-71$):
Every rae.. predicate/language is arithmetical
\therefore the complement of an re. Language is anthmetical so in particular k^{c} is arithmetical

Every Re. predicate is arithmetical
Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc.
Let $R\left(x_{1} \ldots x_{n}\right)$ be an n-arg relation $R \subseteq \mathbb{N}^{n}$
Let $A\left(x_{1}, \ldots, x_{n}\right)$ be an \mathscr{X}_{A} formula, with free variables x_{1}, \ldots, x_{n} $A(\vec{x})$ represents R iff $\forall \vec{a} \in \mathbb{N}^{n}\left[R(\vec{a}) \Leftrightarrow \mathbb{N} \vDash A\left(s_{a_{1}} s_{a_{2}} . . s_{a_{n}}\right]\right.$
Example $R \leq \mathbb{N} \quad R=\{a \in \mathbb{N} \mid a$ is even $\}$

$$
\begin{aligned}
& A(x)=\exists y(y+y=x) \quad \exists y \leq x(y+y=x) \\
& R(3)=\text { false } \text {, and } N A(\text { (sss0 })=\exists y(y+y=5 s 50) \\
& R(4)=\text { true, and } N \in A(\text { (ss50 })=\exists y(y+y=\text { ssss0 })
\end{aligned}
$$

Every Re. predicate is arithmetical
Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc.
Let $R\left(x_{1} \ldots x_{n}\right)$ be an n-arg relation $R \subseteq \mathbb{N}^{n}$
Let $A\left(x_{1}, \ldots, x_{n}\right)$ be an \mathscr{X}_{A} formula, with free variables x_{1}, \ldots, x_{n} $A(\vec{x})$ represents R iff $\forall \vec{a} \in \mathbb{N}^{n} \quad R(\vec{a}) \Leftrightarrow N \vDash A\left(S_{a_{1}} S_{a_{2}} . \cdot s_{a_{n}}\right)$
R is arithmetical iff there is a formula $A \in \mathcal{L}_{A}$ that represents R
Exists-Delta-Theorem every re. relation is arithmetical. In fact every re. relation is represented by a $\exists A_{0} \mathcal{Z}_{A}$-formula.

$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists w\left(t_{1}+w=t_{2}\right)$
$\exists z \leqslant t A$ stands for $\exists z(z \leqslant t \wedge A)$ Bounded
$\forall z \leq t A$ stands for $\forall z(z \leq t \supset A)$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall z_{1} \leqslant t_{1} \exists z_{2} \leqslant t_{2} \forall z_{3} \leqslant t_{3} \ldots \exists z_{k} \leqslant t_{k} A(\vec{x}, \vec{z})$

Bounded Quantifiers
No quantifiers
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
$\exists \Delta_{0}$ Formulas
Example Prime $=\left\{x \in \mathbb{N} \mid x^{\text {is }}\right.$ prinie $\}$ is a Δ_{0}-relation, represented by the following
Δ_{0}-formula:

$$
\begin{aligned}
& A(x) \stackrel{d}{=} \text { so }<x \wedge \forall z_{1} \leq x \forall z_{2} \leq x\left(x=z_{1} \cdot z_{2}>\left(z_{1}=1 \vee z_{1}=x\right)\right) \\
& \forall z_{1} \leq x \forall z_{2} \leq x\left((50<x) \wedge\left(x=z_{1} \cdot z_{2}>\left(z_{1}=\mid \vee z_{1} \cdot x\right)\right)\right)
\end{aligned}
$$

$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists w\left(t_{1}+w=t_{2}\right)$
$\exists z \leqslant t A$ stands for $\exists z(z \leqslant t \wedge A)$ Bounded
$\forall z \leq t A$ stands for $\forall z(z \leq t \supset A)\}$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall z_{1} \leq t_{1}, \exists z_{2} \leq t_{2} \forall z_{3} \leq t_{3} \ldots \exists z_{k} \leq t_{k} A(\vec{x}, \vec{z})$
Definition $A \exists \Delta_{0}$ formula has the form $\exists \underset{\Delta_{0} \text { formula }}{B(\vec{x}, \vec{z})}$
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
Definition $R(\vec{x})$ is a $\exists \Delta_{0}$-relation iff some $\exists \Delta_{0}$-formula represents' it
$\exists d_{0}$ Formulas
Lemma Every Δ_{0} relation is recursive]
Lemma Every $\exists \Delta_{0}$ relation is re.
$\exists \Delta_{0}$ (Exists-Delta) Theorem every re. relation is represented by a $\exists \Delta_{0}$ formula
$K=\{x($ Ex $)$ halts or $x\}$
[$A: \exists y\left\{^{\prime \prime} Y\right.$ describes tableaux of
$\exists \Delta_{0}$ Theorem
Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be a total computable function.
Let $R_{f}=\left\{(\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x})=y\right\} \hookleftarrow$ also Then R_{f} is a $\exists \Delta_{0}$-relation.

Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be total, computable Then $R_{f}=\{(\vec{x}, y) \mid f(\vec{x})=y\}$ is a $\exists \Delta_{0}$ relation

Proof of $\exists \Delta_{0}$ Theorem from Main Lemma
Let $R(\vec{x})$ be an re. relation [example $K(x)$]
Then $R(\vec{x})=\exists y s(\vec{x}, y)$ where s is recursive $K(x)=\exists y s(x, y)$
Since S is recursive, $f_{s}(\vec{x}, y)=\left\{\begin{array}{cc}1 & \text { if }(\vec{x}, y) \in S \\ 0 & \text { otherwise }\end{array}\right.$
is total computable
By main lemma, $R_{f_{s}}$ is represented by a $\exists \Delta_{0}$ relation So $R(\vec{x})=\exists y \underbrace{\exists z B}_{R_{f}}$ is represented by a $\exists \Delta_{0}$ relation

Let $K=\{x \mid\{x\}$ halts on input $x\}$

Can describe k by.
$K=\exists y \underbrace{A(x, y)}$ where A is the recursive relation that accepts iffy y is the tableaux of $\backslash M\{x\}$ when run on uncut x and last coney Q y halts
A is recusile so b main lemma A u represented b_{y} an ∂a_{0} formula
$\therefore K$ is also presented by $\exists \Delta_{0}$ formula

Proof of Main Lemma: MAIN IDEA
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f} be TM computing f
$R(\vec{x}, y)$ will be a $\exists \Delta_{0}$ relation saying:
$\exists m_{n}, d_{d}$ such that
(1) c, d describe the tableaux given by $r_{1} \ldots r_{m} \ldots r_{m^{2}}$
(2) $r_{1} \ldots r_{m}$ encode start config of M_{f} on x
(3) Last m numbers $r_{(m \rightarrow) m} \cdots r_{m^{2}}$ encode last config, containing Y in first cells then B, and state is q_{2}
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

Proof of Main Lemma: MAIN IDEA
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f}^{-} be TM computing f
$R(\vec{x}, y)$ will be a $\exists \Delta_{0}$ relation saying:
$A(x, y) \quad \exists m, c, d$ such that
formula
(1) c, d describe the tableaux given by $r_{1} \ldots r_{m} \ldots r_{m}$
(2) $r_{1} \ldots r_{m}$ encode start config of M_{f} on x
(3) Last m numbers $r_{(m \rightarrow \rightarrow m} \cdots r_{m^{2}}$ encode last config, containing y in first cells then B, and state is q_{2}
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence

We want $A(x, y)$ to be true iff M_{f} on input x halts a outputs y
iff $\exists m$ (runtime of $M_{f} n x$)
iff \exists tableaux T

$$
m^{2} \text { cells }
$$

st. T is correct:

[1. st now of T is stent confly of M_{f} on x $\binom{$ symbol in this cell }{ solute number } 2. las row of T outputs $y+$ is in halt state 3. No other rows are in halt stacte
4. For ely row $i>1$, row i is the coring of $M_{f} m \times$ after i steps
$4^{\text {th }}$ condition can be checked locally

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence
- WARMUP: if exponentiation fyN x^{y} were in \mathscr{L}_{A}, this would be easier.
encode $57,3009,205,4,5$ by

$$
2^{57} \cdot 3^{3009} \cdot 5^{205} \cdot 7^{4} \cdot 11^{5}
$$

$\binom{$ ie $i^{\text {th }}$ number x sequence encoded by P_{i}^{x}, where }{$P_{l}=i^{4}$ smallest prime number }

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence
- WARMUP: if exponentiation fan x^{y} were in \mathscr{L}_{A}, this would be easier.
- But we Need to encode sequences using only $+,{ }^{\circ}, s$
* godel's β function does this using magic of chinese remainder theorem

Proof of Main Lemma (see pp 10-71)
Main idea: is a way of representing sequencer of numbers by numbers using $\exists \Delta$, formulas
Note: Prime power decomposition not useful here since we only hale s, t, -
(ie. represent $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ by $2^{a_{1}} \cdot 3^{a_{2}} \cdot 5^{a_{3}} \cdot 7^{a_{4}}$)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1)
$$

where $\operatorname{rm}(x, y)=x \bmod y$

Proof of Main Lemma (see pp 70-71)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma 0. $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

$_{\text {so }}$ the pair (c, d) represents the sequence $r_{0} r_{1,2}, r_{n}$ using β

Proof of Main Lemma (see PP 70-71)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } m(x, y)=x \bmod y
$$

Lemma 0 $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

ERT (Chinese Remainder Theorem)
Let $r_{0}, \ldots, r_{n}, m_{0}, \ldots, m_{n}$ be such that

$$
0 \leqslant r_{i} \leqslant m_{i} \quad \forall i, 0 \leqslant i \leqslant n \quad \text { and } \operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \quad \forall i, j
$$

Then $\exists r$ such that $r m\left(r, m_{i}\right)=r_{i} \quad \forall i, 0 \leqslant i \leqslant n$

ERT (Chinese Remainder Theorem)
Let $r_{0}, \ldots, r_{n}, m_{0, \ldots}, m_{n}$ be such that:
(1) $0 \leqslant r_{i} \leqslant m_{i} \quad 0 \leqslant i \leqslant n$
(2) $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \quad \forall i_{j} j, i \neq j$

Then $\exists r$ such that $r m\left(r, m_{i}\right)=r_{i} \forall i, 0 \leqslant i \leqslant n$

Proof (counting Argument)

- The number of sequences $r_{0} \ldots r_{n}$ such that (I) holds is

$$
M=m_{0} \cdot m_{1} \cdot \ldots m_{n}
$$

- Each $r, 0 \leqslant r \leqslant M$ corresponds to a different sequence:

Ie. If $\forall i r m\left(r, m_{i}\right)=r_{i}$ and $\forall i r m\left(s, m_{i}\right)=r_{\text {. }}$ Then $r=s$ (mapping is $1-1$)
\therefore for every sequence $r_{0} \ldots r_{m}$, some $r \leqslant M$ maps to it
numbers r

Proof of Main Lemma (see pp 70-71)
Lemma $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
\beta(c, d, i)=r m(c, d(i+1)+1)
$$

$$
\beta(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

where $m(x, y)=x \bmod y$
chinese Remainder Theorem
Let $r_{0}, \ldots, r_{n}, m_{0}, \ldots, m_{n}$ be such that
$0 \leq r_{i} \leq m_{i}$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$. Then $\operatorname{\exists r} \quad m\left(r, m_{i}\right)=r_{i} \forall i$
Proof of Lemma
Let $d=\left(n+r_{0}+\ldots+r_{n}+1\right)$!
Let $m_{i}=d(i+1)+1$
Claim $\forall i, j \operatorname{gcd}\left(m_{i} m_{j}\right)=1$ (proof Next page)
By CRT $\exists r=c$ so that $\beta(c, d, i)=r m\left(c, m_{i}\right)=r_{i} \quad \forall i \in[n]$

Claim Let $d=\left(n+r_{0}+r_{1}+\ldots+r_{n}+1\right)!, \quad m_{i}=d(i+1)+1$ then $\forall i \neq j \leqslant n \quad \operatorname{gcd}\left(m_{c}, m_{j}\right)=1$

PE Suppose P is a prime, and $p(\underbrace{d(i+1)+1}_{m_{i}}, p(\underbrace{d(j+1)+1}_{m_{j}}$ Then $p \mid[\underbrace{d(j+1)+1]}_{m_{j}}-\underbrace{[d(i+1)+1]}_{m_{j}}$ (assume $j>c)$
so $\quad P \mid d(j-i)$
But p cannot divide both d and $d(i+1)+1$ so $p / j-i$ But then $p \leq j-i<n$ so p / d \#

Proof of Main Lemma (see pp 10-71)
Lemma $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
\beta(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

Lemma $1 \operatorname{graph}(\beta)$ is a Δ_{0} relation
Pf We want a D_{0} formula $A\left(z_{1} z_{2} z_{3} z_{\}}\right)$st.
A is the on inputs c, d, i, y ff $\beta(c, d, i)=y$

$$
\begin{aligned}
y=\beta(c, d, c) & \Leftrightarrow c \bmod d(i+1)+1=y \\
& \Leftrightarrow c=[d(i+1)+2] q+y \quad \text { where } y<d((i))+1 \\
y=\beta(c, d, c) & \Leftrightarrow[\exists q \leqslant c(c=q(d(i+1)+1)+y) \wedge y<d(i+1)+1]
\end{aligned}
$$

Proof of Main Lemma (see Pp 70-71)
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f} be TM computing f
$R(\vec{x}, y)$ will be a $\exists \Delta_{0}$ relation saying:
$\exists m, c, d$ such that
(1) c, d describe the tableaux given by $r_{1} \ldots r_{m} \ldots r_{m^{2}}$ given by β function
(2) $r_{1} \ldots r_{m}$ encode start config of M_{f} on x
(3) Last m numbers $r_{(m \rightarrow) m} \cdots r_{m^{2}}$ encode last config, containing Y in first cells then B, and state is q_{2}
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

Recap: we wanted to prove
$\exists \Delta_{0}$ (Exists-Delta) Theorem every rue. relation is represented by a $\exists \Delta_{0}$ formula

Which followed by Main Lemma:
f total, computable $\Rightarrow R_{f}$ is a $\exists \Delta_{0}$ relation

Recap: First Incompleteness Theorem
$1^{\text {st }}$ Incompleteness Theorem:
TA is not axiomatizable
That is, any sound, axiomatizable theory is incomplete.
$\rightarrow P A$ is axiomatizable. So assuming $P A$ is sound, it is incomplete (so there are sentences A such that wither A or $\neg A$ is provable from axioms of PA.)

Recap: First Incompleteness Theorem
$1^{\text {st }}$ Incompleteness Theorem: TA is not axiomatizable
That is, any sound, axiomatizable theory is incomplete.
$\rightarrow P A$ is axiomatizuble. So assuming $P A$ is sound, it is incomplete (so there are sentences A such that wither A or $7 A$ is provable from axioms of PA.)

Γ sound and axiomatizable $\Rightarrow \exists A,{ }^{7} A \nLeftarrow \Gamma$

Tarski Theorem
Define the predicate Truth $\leq \mathbb{N}$

$$
\text { Truth }=\{m \mid m \text { encodes a sentence }\langle m\rangle \in T A\}
$$

Then Truth is not arithmetical.
By $\exists \Delta_{0}$-Theorem (every ne. Set/Language is arithmetical) this implies that Truth is not re.

High Level idea of Proof:
Formulate a sentence "J am false" which is self-contradictory

Pf of Tarski's 1 hm
Let $\operatorname{sub}(m, n)=\left\{\begin{array}{l}0 \text { if } m \text { is not a legal encoding of a formula } \\ \text { otherwise say } m \text { encodes the formula }\end{array}\right.$ $A(x)$ with free variable x. Then $\operatorname{sub}(m, n)=m^{\prime}$ where m^{\prime} encodes $A\left(S_{n}\right)$
$[\operatorname{sib}(m, n)$: decode m, plug in $n+$ re-encode $]$

Let $d(n)=\operatorname{sub}(n, n)$

$$
\begin{aligned}
& d(n)=\text { sub }(n, n) \\
& \left\{\begin{array}{l}
d(n)= \\
0 \text { if } n \text { not a legal encoding. } \\
\text { ow say } n \text { encodes } A(x) . \\
\text { then } d(n)=n^{\prime} \text { where } n^{\prime} \text { encodes } A\left(s_{n}\right)
\end{array}\right\}
\end{aligned}
$$

clearly sub, d are both computable
so by $\exists a_{0}$-theorem graph(sub), graph (d) are arithmetical

Proof of Tarski's The
Suppose that Truth is arithmetical.
Then define $R(x)=1 \operatorname{Truth}(d(x))$
Since d, Truth both arithmetical, so is R
Let $\overparen{R(x)}$ represent $R(x)$, and let e be the encoding of $\widetilde{R(x)}$
Let $d(e)=R\left(s_{e}\right)$ encodes
"I am false"
Then

$$
\begin{aligned}
& R\left(S_{e}\right) \in T A \Leftrightarrow \neg \operatorname{Truth}\left(d\left(e_{1}\right)\right) \text { since } \widetilde{R} \text { represents } R \\
& \Leftrightarrow-R\left(s_{e}\right) \in T A \quad \text { by deft of truth } \\
& \Leftrightarrow R\left(s_{e}\right) \in T A \quad T A \text { contains exactly one of } A, T A
\end{aligned}
$$

this is a contradiction. \because Truth is not arithmetical

PLANO ARITHMETIC
PR. $\forall x(s x \neq 0)$
PR. $\forall x \forall y\left(s_{x}=s_{y}>x=y\right) \quad s$ is $1-1$
P3. $\left.\begin{array}{l}\forall x(x+0=x) \\ \text { P4. } \forall x \forall y(x+s y=s(x+y)\end{array}\right\}$ define +
P5. $\forall x(x \cdot 0=0)$
P6. $\forall x \forall y(x \cdot s y=(x \cdot y)+x\}$ define.

$$
\operatorname{IND}(A(x)): \forall y_{1} \ldots \forall y_{k}[(A(0) \wedge \forall x(A(x)>A(5 x)))>\forall x A(x)]
$$

INDVCTION Axioms: All sentences $5 N D(A(x))$ for all formulas A whose tree variables are $Y_{1} \ldots Y_{k}, x$

$$
\Gamma_{P A}=\left\{P_{1}, \ldots, P_{6}\right\} \cup\{\text { SNDUCTION AxIOMS }\}
$$

1. $\Gamma_{P A}$ is recursive
2. $P A$ is sound + axiomatizable (so incomplete)
3. PA still strong enough to prove all of standard number theory

Robinson's Arithmetic RA
Axions $\{P 1, \ldots, P 6\}$ of $P A$ plus $P 7, P 8,39$

$$
\begin{aligned}
& \text { P7: }(\forall x \quad x \leqslant 0>x=0) \\
& \text { P8: } \forall x \forall y(x \leqslant s y>(x \leqslant y \vee x=s y)) \\
& \text { Pq: } \forall x \forall y \quad(x \leqslant y \vee y \leqslant x)
\end{aligned}
$$

where $t_{1} \leq t_{2}$ abbreviates $\exists z\left(t_{1}+z=t_{2}\right)$
FACTS (1) RA $\subseteq P A$
(2) RA finitely axiomatizable

Stronger Version of Incompleteness The
Recall
$R(\vec{x})$ is represented by an $\exists \Lambda_{0}$ formula $A(\vec{x})$ if

$$
\forall \vec{a} \in \mathbb{N} \quad R(\vec{a}) \Leftrightarrow T \Delta \vDash A\left(S_{\vec{a}}\right)
$$

Stronger version:
$R(\vec{x})$ is represented in RA by $A(\vec{x})$ if

$$
\forall \vec{a} \in \mathbb{N} \quad R(\vec{a}) \Leftrightarrow R A \vDash A\left(S_{\vec{a}}\right)
$$

RA Representation Theorem
Every re. relation is represented in RA by an $\exists \Delta_{0}$ formula

Corollaries of RA Representation Theorem
(1.) RA is not recursive

Pf sketch: K 'is re. but not recursive
K re. \Rightarrow it is represented in $R A$ by some $\exists a_{0}$-formula A If $R A$ recursive then K recursive. Contradiction
(2) VALID is not recursive

Pf idea: RA is finitely axiomatizable!
$A \in R A \Leftrightarrow P \mid \cap \ldots \wedge P G \Rightarrow A$ is valid
so membership in RA is reducible to membership in VALID

RA Representation Theorem
Every re. relation is represented in RA by an $\exists \Delta_{0}$ formula

Proof idea
Main Lemma: every Δ_{0}-sentence in $T A$ is provable in $R A$
Assuming Main Lemma, Let $R(\vec{x})$ be an re. relation,
By Exists -Delta Theorem, $R(\vec{x})$ is represented (in T_{A}) by some $\exists a_{0}$-formula $A(\vec{x})$ so $\forall \vec{a} \in \mathbb{N}^{k} \quad R(\vec{a}) \Leftrightarrow \exists y \frac{A\left(S_{\vec{a}}, y\right)}{\Delta_{0}} \in \operatorname{TA}_{A}$
\therefore By sounchess $Q R A+$ since every $\exists \angle_{0}$ sentence $9 T A$ is provable in $R A$

$$
R(\vec{a}) \Leftrightarrow R A \vdash \partial^{\prime} y A\left(S_{\vec{a}}, y\right)
$$

So $\partial_{y} A(\vec{x}, y)$ represents $R(\vec{x})$ in $R A$
$2^{\text {Nd }}$ IncOmpleteness THEOREM

Recall PA is a strong sound subtherry of $T A$
$Z^{\text {nd }}$ Incompleteness Thu
PA cannot prove its own consistency
$2^{\text {nd }}$ Incompleteness Thu
(1) A specific sentence "J am not provable" $\equiv g$ such that neither g Nor $7 g$ are provable in PA (assuming PA is consistent)
(2) Consistency of PA, con (PA) is Not provable ir PA (assuming PA is consistent)

- Let $\Gamma_{p A}$ be the set of axioms of PA
- Let Proof (x, y) : true if and only. if y codes a $L K-\Gamma_{P A}$ proof of the sentence coded by x
- Recall $d(n)=\# A\left(S_{n}\right)$ where $\# A(x)=n$
(so n codes the formula $A(x)$, and $d(n)$ codes $A\left(S_{n}\right)$)
- Let $\Gamma_{p A}$ be the set of axioms of PA
- Let Proof (x, y) : true if and only. if y codes a $L K-\Gamma_{P A}$ proof of the sentence coded by x
- Recall $d(n)=\# A\left(S_{n}\right)$ where $\# A(x)=n$
(so n codes the formula $A(x)$, and $d(n)$ codes $A\left(S_{n}\right)$)
- Let $s(x)$ be the re. relation: $\exists y \operatorname{Proof}(d(x), y)$
- Let $\Gamma_{p A}$ be the set of axioms of PA
- Let Proof (x, y) : true if and only. if y codes a LK- $\Gamma_{P A}$ proof of the sentence coded by x
- Recall $d(n)=\# A\left(S_{n}\right)$ where $\# A(x)=n$
(so n codes the formula $A(x)$, and $d(n)$ codes $A\left(S_{n}\right)$)
- Let $s(x)$ be the re. relation: $\exists y \operatorname{Proof}(d(x), y)$
- By Ra representation Theorem, let $A(x)$ be a $\exists \Lambda_{0}$ formula that represents $S(x)$ in $R A$ (ohence in PA)
- Then $\forall n \in \mathbb{N} \quad \exists y \operatorname{Proof}(d(n), y) \Leftrightarrow P A 1-A\left(s_{n}\right) \quad(*)$
- Recall $d(n)=\# A\left(s_{n}\right)$ where $\# A(x)=n$
(so n codes the formula $A(x)$, and $d(n)$ codes $A\left(S_{n}\right)$)
- Let $s(x)$ be the re. relation: $\exists y \operatorname{Proof}(d(x), y)$
- By RA representation Theorem, let $A(x)$ be a $\exists \Lambda_{0}$ formula that represents $S(x)$ in $R A$ (ohence in $P A$)
- Let $e=\# \wedge A(x)$, so $d(e)=\# \cap A\left(S_{e}\right)$
- Let $g \stackrel{d}{=} \sim A\left(s_{e}\right)$
- says that "I am not provable" since $7 A\left(S_{e}\right)$ says the formula encoded by $d(e)$-- which is $\mathrm{g}^{- \text {- is not provable in } P A}$
- Let $s(x)$ be the re e relation: $\exists y \operatorname{Proof}(d(x), y)$
- By RA representation Theorem, let $A(x)$ be a $\exists \Delta_{0}$ formula that represents $S(x)$ in $R A$ (ohence in $P A$)
- Let $e=\# \neg A(x)$, so $d(e)=\# \neg A\left(S_{e}\right)$
- Let $g \stackrel{d}{=} \sim A\left(s_{e}\right)$

Theorem PA consistent $\Rightarrow P A \not \subset g$
PF suppose PA t g
Then sentence number $d(e)$ is provable, so $\exists y \operatorname{Proof}(d(e), y)$
Thus PA $\vdash A\left(S_{e}\right)$ by left-to-rt direction of (*)
Thus PA arg and 'PAF g so PA not consistent

- Let $s(x)$ be the re. relation: $\exists y \operatorname{Proof}(d(x), y)$
- By RA representation Theorem, let $A(x)$ be a $\exists \Delta_{0}$ formula that represents $S(x)$ in $R A$ (o hence in $P A$)
- Let $e=\# \neg A(x)$, so $d(e)=\# \neg A\left(S_{e}\right)$
- Let $g \stackrel{d}{-} \sim A\left(s_{e}\right)$

Theorem PA consistent $\Rightarrow P A \neq 1 g$
Pf suppose PAFTg, ie PA proves $A\left(s_{e}\right)$
Then $\exists y \operatorname{Proot}(d(e), y)$ by rt-toteft direction $Q(*)$
So $P A$ proves $\neg A\left(S_{e}\right)$
So $P A+g$ and $P A-T g$, so $P A$ rot consistent

Formulating consistency in PA
Let $B(x, y)$ be a $\exists \Delta_{0}$ formula that represents
$\operatorname{Proof}(x, y)$ in RA (and thus also in PA)
Then for every sentence C

$$
P A \vdash C \leftrightarrow P A \vdash \exists y \underbrace{B(\# C, y)}_{\text {stands for } B\left(S_{\# k}, y\right)}
$$

Then $P A \vdash A\left(S_{n}\right) \supset \exists y B\left(S_{d(n)}, y\right)$
[recall $A(x)$ represents $\exists y B(d(x), y)]$

Formulating consistency in PA
Let $B(x, y)$ be a $\exists \Delta_{0}$ formula that represents
$\operatorname{Proof}(x, y)$ in RA (and thus also in PA)
Then for every sentence C

$$
P A \vdash C \leftrightarrow P A \vdash \exists y \underbrace{B(\# C, y)}_{\text {stands for } B\left(S_{\text {\#k }}, y\right)}
$$

Then $P A \vdash A\left(S_{n}\right) \supset \exists y B\left(S_{d(n)}, y\right)$
[recall $A(x)$ represents $\exists y B(d(x), y)]$
Define $\operatorname{con}(P A) \stackrel{d}{=} \neg \exists y B(\# 0 \neq 0, y)$

Theorem If PA is consistent, then PA X con $(P A)$
Proof:
Main Lemma: PA $\vdash(\operatorname{con}(P A)>g)$

$$
\left[\begin{array}{ccc}
\text { recall } g \stackrel{d}{=} \neg A\left(s_{e}\right), \quad e=\# \neg A(x) \text { says } \\
& \text { :sam Not provable" }
\end{array}\right]
$$

If $P A+\operatorname{con}(P A)$ by main Lemma $P A \vdash g$ But by previous theorem PA consistent $\Rightarrow P A X g$
$\therefore P A$ consistent $\Rightarrow P A \not \subset$ con (PA)

It is left to prove:
Main Lemma: PA $\vdash \operatorname{con}(P A) \supset g$

$$
\left[\begin{array}{c}
\text { recall } g \stackrel{d}{=} \neg A\left(s_{e}\right), \quad e=\# 7 A(x) \text { says } \\
\\
\text { :sam not provable" }
\end{array}\right]
$$

4
Need to formalize Proof of godel's Incompleteness Thy in PA. Main step is to formalize in $P A$ that every true $\exists A_{0}$ sentence is provable in $R A$.

