Announcements

- · HWZ DUE MONDAY NOU 15
- · Testa MONDAY NOV 22

tonipitassi @gmail.com

$$L_{2} = \{ x \mid x \} \text{ accepts at least one input} \}$$

$$L_{2} = \{ x \mid x \} \text{ not recursive}$$

So $L_{2} = \{ x \mid x \} \text{ accepts NO inputs} \}$

$$I_{2} = \{ x \mid x \} \text{ accepts NO inputs} \}$$

$$I_{2} = \{ x \mid x \} \text{ accepts NO inputs} \}$$

Say ne had a language L Not r.e.
* we want to show L' is also not ne. Then we would
use an alleged TM M' st.
$$R(M') = L'$$
 is order to construct
a TM M st $R(M) = L$

Construct a TM, M_{HALT} for HALT:
M_{HALT} on input
Want: to design Z_{xy} such that:

$$\{Z_{xy}\}$$
 accepts an even number of inputs
iff $\{x\}$ does not halt on y

Thus we have shown that if Lis r.e. then HALT is r.e. Since HALT is Not r.e., we have proven that L is Not r.e.

Review of Definitions (p. 75) Language of arithmetic $J_{A} = 20, s, t, \cdot; = 3$ € = all Z_A-sentences TA > 2 A ∈ Q. / IN = A 3 True Anthmetic A theory Z is a set of sentences (over ZA) closed under logical consequence -We can specify a theory by a subset of sentences that logically implies all sentences in Z Σ is <u>consistent</u> iff $\Phi_{S} \neq \Sigma$ (iff $\forall A \in \Phi_{O}$, either A or $\uparrow A$) Not in Σ) Z is complete iff Z is consistent and VA either A or 7 A is in Z

Let Z be a theory Z is <u>axiomatizable</u> if there exists a set $\Gamma \leq \geq$ such that O Γ is recursive $O \geq Z = E A \in \Phi_0 | \Gamma \models A = E$

Theorem Z is axiomatizable iff Z is n.e. (P. 76 of Notes)

* Theorem

Let $f: IN \rightarrow IN$ Let $R_f = IN \times IN$ be the set of all pairs (x,y) such that f(x) = yThen f computable if and only if R_f is r.e.

*Theorem A relation
$$A \subseteq IN$$
 is r.e.
if and only if there is a recursive relation
 $R \subseteq IN^2$ such that
 $\chi \in A \iff \exists y R(x, y) \quad \forall x \in IN$

Let
$$\Xi$$
 be a theory
 Ξ is axiomatizable if there exists a set $\Gamma \equiv \Xi$
such that $\bigcirc \Gamma$ is recursive
 $\bigcirc \Xi = \xi A \in \overline{\Sigma}_0 | \Gamma \models A \overline{3}$
Theorem Ξ is axiomatizable iff Ξ is r.e.
Proof \Longrightarrow . Suppose Ξ is axiomatizable iff Ξ is r.e.
Proof \Longrightarrow . Suppose Ξ is axiomatizable iff Σ is r.e.
Proof \Rightarrow . Suppose Ξ is axiomatizable iff Σ is r.e.
Proof \Rightarrow . Suppose Ξ is axiomatizable iff Σ is r.e.
Ris recursive, so by previous *Theorem, Ξ is r.e.

Let
$$\Xi$$
 be a theory
 Ξ is axiomatizable if there exists a set $\Gamma = \Xi$
such that $\bigcirc \Gamma$ is recursive
 $\bigcirc \Xi = \xi A \in \overline{\Phi}_0 | \Gamma \models A \overline{J}$
Theorem Ξ is axiomatizable iff Ξ is r.e.
Proof \Longrightarrow . Suppose Ξ is axiomatizable, Γ recursive
Define $R(x, y) = true$ iff y encodes a Γ -LK proof
of (the formula encoded by) x
R is recursive, so by previous $\#$ Theorem, Ξ is r.e.

Let Z be a theory
Z is axiomatizable if there exists a set
$$\Gamma = \Xi$$

such that ① Γ is recursive
② $\Sigma = \{A \in \overline{\Phi}_o \mid \Gamma \models A\}$
Theorem Ξ is axiomatizable iff Ξ is r.e.