Announcements

- HW2 Due Monday nov 15
- Testa monday nov 22

TODAY:
Two

- Ogle more examples showing a Language Not recursive
- Introduction to Incompleteness
(I.)
$L=\{x \mid\{x\}$ accepts at least one input $\}$
Claim L is re e but not recursive.
(1) Lis re. Enumerate all string in $\{0,1\}^{*}$

$$
\{\varepsilon, 0,1,00,0,10,11, \infty 0,
$$

Alg
Dovetail Procedure for L on input x :
For $i=1,33 \ldots \ldots$
$\left[\begin{array}{l}\text { For } j=1, \ldots i \\ \text { Sininalate }\{x\}_{1}, n \quad w_{j} \text { for } i \text { steps }\end{array}\right.$
If any of the simulations accepts, AXLT a accept
$x \in L \Rightarrow A$ on x halt \propto accept's
$x A L \Rightarrow$ Alg or x will wit hut theerfore wort arlo x
$L=\{x \mid\{x\}$ accepts at least one input $\}$
(2) Lis not recursive
$L_{1}=K=\{y \mid\{y\}(y)$ halts $\}$
Assume $L_{2}=L$ is recursive + Let M_{2} be $T M \mathcal{L}\left(M_{2}\right)=C$ and M_{2} always halts
M_{1} on input y :
construct encoding z o $T M\{z\}$ where
$\{z\}$ on input x : Ignores $x+$ runs $\& \beta_{\mathrm{om}} y$
and $\alpha \ll p^{\prime \prime} \times$ if $\{y\}(y)$ halts
Run $M_{2} m z$ and accept y iff $M_{z}(z)$ accepts
claim $\mathscr{L}\left(M_{1}\right)=K$ and μ_{1} always halts
$y \in K \Rightarrow\{y\}(y)$ halts $\Rightarrow\{z\}$ accepts all inputs $\Rightarrow M_{z}(z)=1 \Rightarrow M_{1}(y)=1$
$y \neq K \Rightarrow\{y\}(y)$ doesnt $\Rightarrow\{z\}$ arced's No input $\Rightarrow M_{2}(z) \neq 1 \Rightarrow M_{1}(y) \neq 1$
halt
$L_{2}=\{x \mid\{x\}$ accepts at least one input $\}$
$\therefore L_{2}$ is re. but not recursive
so $\bar{L}_{2}=\{x \mid\{x\rangle$ accepts no inputs $\}$ is not re.

Say ne had a language L not re.

+ we want to show L 'is also no l re. Thew u would use an alleged $T M M^{\prime}$ st. $f\left(M^{\prime}\right)=L^{\prime}$ ir adder to construct a $T M \mu$ st $~ L(M)=L$
(II)
$L=\{x \mid\{x\}$ accepts an even number of inputs in $\left.\{0,1\}^{*}\right\}$
$\bar{L}=\{\langle M\rangle(M$ accepts an infinite $\#$ of inputs or an odd number of inputs?

Claim
ΔL is not re.

Let $\overline{\text { Halt }}=\{\langle x, y\rangle \mid\{x\}$ does not halt on input $y\}$

$$
\overline{\text { Halt }}=\{\{x, y\rangle ;\{x\} \text { does not halt on } y\} \Leftarrow \text { Not re. }
$$

Assume for sake of contradiction that L is re., * Let μ be a TM st $\mathscr{L}(M)=L$.

Constrict a TM, $M_{\overline{\text { HALT }}}$ for $\overline{H A L T}$:
$M_{\text {HALT }}$ on input $\langle x, y\rangle$:
Want: to design $z_{x y}$ such that:
$\left\{z_{x, y}\right\}$ accepts an even number of inputs iff $\{x\}$ does not halt on y
$\left\{z_{x y}\right\}$ on input w :
if $W=0$ run $\{x\}$ on y and if $\{x\}$ halts on y accept w if $w \neq 0$ halt and reject
$M_{\text {HALT }}$ on input (x, y) :
Constrict encoding $z_{x, y}$ of TM $\left\{z_{x y}\right\}$
Run M (TM for L) on $z_{x y}$ accept (x, y) iff $M\left(z_{x y}\right)$ halts o accepts
$\left\{z_{x y}\right\}$ on input w :
if $w=0$ run $\{x\}$ on y and if $\{x\}$ halts on y accept w
if $w \neq 0$ halt and reject
$M_{\text {HALT }}$ on input (x, y) :
Constrict encoding $z_{x, y}$ of $T M\left\{z_{x y}\right\}$
Run M ($T M$ for L) on $z_{x y}$ accept (x, y) iff $M\left(z_{x_{7}}\right)$ halts a accepts

Correctness:

1. $\{x\}$ does not halt on input y.

Then $\left\{z_{x y}\right\}$ accepts no inputs, so $\left\{z_{x y}\right\}$ accepts an even number of inputs. Thus $M\left(z_{x y}\right)$ accepts, so $M_{\overline{H D L T}}(x, y)$ accepts
2. $\{x\}$ halts on input y.

Then $\left\{z_{x y}\right\}$ accepts only one input $(w=0)$, so $\left\{z_{x y}\right\}$ accepts an odd number of inputs. Thus $M\left(z_{x_{1}}\right)$ does not accept so $M_{\text {halt }}(t, y)$ does not accept.

Thus we hale shown that if L is re.
Then $\overline{\text { HALT }}$ is re.
Since $\overline{\text { BALT }}$ is Not re., we have proven that L is not re.

Review of Definitions (p.75)
$\mathcal{L}_{A}=\left\{0_{1} s_{1}+, \cdots ;=\right\} \quad$ Language of arithmetic $\Phi_{0}=$ all \mathcal{L}_{A}-sentences
$T A=\left\{A \in \Phi_{0} \mid \mathbb{N} \vDash A\right\} \quad$ True Anthmetic
A theory \sum is a set of sentences (over \mathcal{Z}_{A}) closed under logical consequence

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ
Σ is consistent iff $\Phi_{0} \neq \Sigma$ (iff $\forall A \in \Phi_{0}$, either A or $1 A$ Not in Σ)
Σ is complete iff Σ is consistent and $\forall A$ either A or $7 A$ is in Σ
Σ is sound iff $\Sigma \leq T A$
Let M be a model/structure over \mathcal{L}_{A}
Th $(m)=\left\{A \in \Phi_{0} \mid \quad M \in A\right\}$
Th (an) is complete (for all structures $O M$)
Note $T A=$ Th (\mathbb{N}) is complete, consistent, a sound
$V A L D=\left\{A \in \Phi_{0} \mid \in A\right\}$
smallest theory
all sentences in Φ_{0}

Let Σ be a theory
Σ is axiomafizable if there exists a set $\Gamma \leq \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem \sum is axiomatizable iff Σ is re. (P. 76 of Notes)
*Theorem
Let $f: \mathbb{N} \rightarrow \mathbb{N}$
Let $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$ be the set of all parrs (x, y) such that $f(x)=y$ Then f computable if and only if R_{f} is re.
*Theorem A relation $A \subseteq \mathbb{N}$ is re. if and only if there is a recursive relation $R \leq \mathbb{N}^{2}$ such that

$$
x \in A \Leftrightarrow \exists y R(x, y) \quad \forall x \in \mathbb{N}
$$

Let \sum be a theory
Σ is axiomatizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\sum=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable ff Σ is re.
Proof \Rightarrow Suppose Σ is axiomatizable, r recursive Define $R(x, y)=$ true iffy y encodes a Γ-LK proof of (the formula encoded by) x R is recursive, so by previous *Theorem, Σ is r.e.

Let Σ be a theory
Σ is axiomatizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable af Σ is re.
Proof \Rightarrow. Suppose Σ is axiomatizable, Γ recursive Define $R(x, y)=$ true iffy y encodes a Γ-LK proof of (the formula encoded by) x r is recursive, so by previous Theorem, Σ is re.

Let Σ be a theory
Σ is axiomatizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable of Σ is re.

Proof
\Leftarrow By *Theorem, $\Sigma=$ range of total computable function f

$$
\therefore \quad \Sigma=\{f(0), f(1), f(2), \ldots .\}
$$

That is if A_{n} is the sentence such that $\# A_{n}=f(n)$
then $A_{0}, A_{1}, A_{2}, \ldots$ is an effective enumeration of Σ
Let $B_{n}=A_{0} \wedge A_{1} \wedge \ldots \wedge A_{n}$
Let $\Gamma=\left\{B_{0}, B_{1}, \ldots\right\}$.

Chis is a set q axioms for \sum and is recursive!
(can check if some $F=A_{0} \wedge A_{1} \wedge \wedge A_{j}$ for some ;)

