SUMMARY SO FAR

1. We saw $D=\left\{x \mid\{x\}_{1}(x)\right.$ does not accept $\}$ is not re. by diagonalization
2. Using reductions we have:

- K, Halt are Not recursive (but both are re.)
- \bar{k}, $\overline{\text { HALT }}$ are Not re.
$K=\{x \mid\{x\}$, halts on input $x\}$
D $=\bar{K}$

Another example: $L=\{x \mid\{x\}$ accepts at least one input $\}$ L is re. but not recursive.

Lis re: Enumerate all string in $\{0,1\}^{*}$

$$
\begin{aligned}
& \{\varepsilon, 0,1,00,01,10,11, \infty 0, \\
& \uparrow \mid(1 \\
& w_{1} w_{2} w_{3}
\end{aligned}
$$

Dovetail Procedure for L on input x :
For $i=1,33$,
For $j=1, \ldots i$
Simulate $\{x\}_{1} \cap \sim w_{j}$ for i steps
If any of the simulations accepts, NALT a accept
$L=\{x \mid$ ix\} acceds af least one injut $\}$
Want to show if L is recmsie then so is K.
Let M be a $+M$ aluajs nolts racepts L.
Using M_{1} unstruct M^{\prime} that aluays halts a accepts K.

$$
k=\{y \mid\{y\} \text {, on y halts }\}
$$

m^{\prime} on input $Y:$

Run M on $\left\langle M^{\prime \prime}\right\rangle$
If Maccepts \rightarrow acsert
ow \rightarrow reject

Intermediate manterie $M^{\prime \prime}$ on z ignore z similate fition y If simulation haelts acept
atmen: (1) y hants \rightarrow halts roceseds all ippets
(1) y desent beet ony \rightarrow Not buet inpuan

Another example: $L=\{x \mid\{x\}$ accepts at least one input $\}$
Lis not recursive:

$$
L_{1}=K=\{y \mid\{y\}(y) \text { halts }\}
$$

Assume $L_{2}=L$ is recursive + Let M_{2} be TM $\mathcal{L}\left(M_{2}\right)=C$ and M_{2} always halts
M_{1} on input y :
Construct encoding z of M $\{z\}$ where
$\{z\}$ on input x : Ignores $x+$ runs $\{$,$\} on y$
and ar<pts x if $\{y\}(y)$ halts
Run M_{2} on z and accept y ff $M_{2}(z)$ accepts
Claim $\mathscr{L}\left(M_{1}\right)=K$ and μ_{1} always halts
$y \in K \Rightarrow\{y\}(y)$ halts $\Rightarrow\{z\}$ accepts all inputs $\Rightarrow M_{z}(z)=1 \Rightarrow M_{1}(y)=1$
$y \& K \Rightarrow\{y\}(y)$ doesnt $\Rightarrow\{z\}$ arced's No inpuf $\Rightarrow M_{2}(z) \neq 1 \Rightarrow M_{1}(y) \neq 1.1$ halt.
$L=\{x \mid$ TM encoded by x halts on >2 inputs in $\left.\{0,1\}^{\infty}\right\}$
$L=\{x \mid \text { TM } x \text { halts on } \leqslant \alpha \text { inputs }\}_{\text {_ }} \quad$ Vie.
if L is re and \bar{C} is $e \longrightarrow$ then both cure recursive on input x : (want to decide of $x \in L$).

For $i=1,2$.
Ten x on $T M$ for L for i steps
if accepts \rightarrow hall r accept
Run x on $T M$ for L for insteps aceptr \rightarrow halt o reject
$L=\{x \mid$ TM encoded by x halts on

$$
\bar{L}=\left\{x \mid T \mu \times \text { halts on } \leq 2 \text { inputs in }\{0,1]^{*}\right\}
$$

1. $L_{1}=\{x \mid T M$ encoded by x Never moves head Left on any input?
2. $L_{2}=\{\langle x, y\rangle / T M x$ on input y Never moves head left $\}$ $I_{2}=\{\langle x, y\rangle$ / x on input y mores head left at some point?

Harder case (of deciding L_{2})
State transition table does hae some fransitions that move head to left

Mochuie x. Assume stake of x are $q_{0} q_{1} q_{2} q_{3} q_{4}$ assume ipht/take alphabet $=\{0,1,4\}$
Let $y \in\{0,1\}^{*}$

$L=\left\{x \mid\right.$ TM encoded by x halts $n>2$ inputs in $\left.\{0,1\}^{x}\right\}$
$[=\{x \mid T M \times$ halts on $\leqslant 2$ inputs $\}$
$L^{\prime}=\left\{x \mid\right.$ TM encoded by x halts on exactly 2 inputs in $\left\{G_{1}\right\}^{*}$ © Not re.
$D=\{x \mid\{x\}$ doesnt halt on $x\}$
assure M^{\prime} accepts L^{\prime} (but M^{\prime} dent necessailly always halts\} ~ Want to construct a TM asserts D.

Assume
$L^{\prime}=\{\times 1 \times$ halts on exact) 72 inputs $\}$
M^{\prime} accepts L^{\prime}

$$
D=\{z(\{z\} \text { doesnt halt on } z\}
$$

μ on z :

1. construct interned $T M N$ where N on y
N on input y :
If $y=0$ then halt races
$y=$ halt - acepl
If $y=00$ simulate $\{z\}$ on z if halts then halt
ow (for all other y)
cp into an infinite loop
2. Run μ^{\prime} on $\langle N\rangle$. accept iff M^{\prime} accepts

Compreteness
A set $A \subseteq \mathbb{N}$ is re.-complete if
(1) A is r.e.
(2) $\forall B \leq \mathbb{N}$, if B is r.e. then $B \leqslant_{m} A$
\exists computable function $f: \mathbb{N} \Rightarrow N$ such that $\forall x \quad f(x) \in A \Leftrightarrow x \in B$

N

Compreteness
similarly
a language $A \subseteq\left\{0_{1}\right\}^{*}$ is r.e.-complete if
(1) A is r.e.
(2) $\forall B \leq\{0,1\}^{*}$, if B is r.e. then $B \leqslant_{m} A$
\exists computable function $f: \mathbb{N} \Rightarrow N$ such that $\forall x \quad f(x) \in A \Leftrightarrow x \in B$

Hilbert's $10^{\text {th }}$ Problem (1900)
A diophantivic equation is of the form $p(\vec{x})=0$ where p is a polynomial over variables X_{1}, \ldots, X_{n} with integer coefficients

Ex $3 x_{1}^{5} x_{2}^{3}+\left(x_{1}+1\right)^{8}-x_{7}^{10}=0$

$$
\mathcal{L}_{\text {DIOPH }}=\{\langle p\rangle \mid p \text { has a solution over } \mathbb{N}\}
$$

Theorem

$$
\mathcal{L}_{\text {DIopH }} \text { is r.e.-complete }
$$

An Equivalent characterization of RE sets
Let $\quad f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Rightarrow : Suppose f computable.
TM for R_{f} on input (x, y) :
Run TM computing f on x.
If it halts and outputs y then accept (x, y) Otherwise reject (x, y)

An Equivalent Characterization of RE Sets

Let $f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Leftarrow : Let R_{f} be r.e. with TM M
On X: Enumerate all $\mathbb{N}: Y_{1}, Y_{2}, \ldots$
For $i=1,2, \ldots$
For all $j \leq i$: $\operatorname{simulate} M$ on $\left(x, y_{j}\right)$ for i steps If simulation accepts $\left(x, y_{j}\right)$, halt + output Y,

A second Characterization of $R E$ sets
*Theorem A relation $A \subseteq N^{k}$ is re. If and only if there is a recursive relation $R \leq N^{k+1}$ such that
\mathbb{N}^{2}

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Note we defined A to be re. iff there is a TM M such that $\forall \vec{x} \in \mathbb{N}^{n} \quad(M(\langle x\rangle)$ accepts $\Leftrightarrow \vec{x} \in A)$

A language $L \subseteq\{0,1\}^{*}$ is re.
iff there exists a relation $R \leqslant\{0,1\}^{2} \times\{0,1\}^{+}$
s.t. $\forall x \in\{0,1\}^{x}$
$x \in L \quad$ eff $\exists Z \in\{0,1\}^{x} R(x, z)$
where R is recursive

Ex. Let $L=$ Halt $=\{\langle x, y\rangle \mid T M$ encoded by x hoots on
Let $\left.R(x, y), \frac{z}{q}\right)=\left\{\begin{array}{l}1 / a c c e p t \text { if } x \text { halts } \\ \text { on } y \text { in exady z shes }\end{array}\right.$ input $\left.y\right\}$ \# i steps

A Second Characterization of RE Sets

* Theorem A relation $A \subseteq N^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Rightarrow : Let A be re., $\mathscr{L}(M)=A$
$R(\vec{x}, y)$: view y as encoding of an $m \times m$ tableaux for some $m \in \mathbb{N}$
$(\vec{x}, y) \in R \Leftrightarrow M(\vec{x})$ halts in m steps and accepts and y is the $m \times m$ tableaux of $M(\vec{x})$

A second Characterization of $R E$ Sets

* Theorem A relation $A \subseteq \mathbb{N}^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Leftarrow Let $R \leq \mathbb{N}^{k+1}$ be recursive relation such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y), \quad+\text { Let } \mathscr{L}(M)=R
$$

on input \vec{x} :
For $i=1,2, \ldots$
For $j=1$ to i
Run M on (\vec{x}, \hat{y}_{j})
halt + accept if $M\left(\vec{x}, y_{j}\right)$ a accepts

Review of Definitions
$\mathcal{L}_{A}=\left\{0_{1} s_{,}+, \cdots ;=\right\} \quad$ Language of arithmetic $\Phi_{0}=$ all \mathcal{L}_{A}-sentences
$T A=\left\{A \in \Phi_{0} \mid \mathbb{N} \vDash A\right\}$ True Anthmetic
A theory \sum is a set of sentences (over \mathcal{Z}_{A}) closed under logical consequence

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ
Σ is consistent iff $\Phi_{0} \neq \Sigma$ (iff $\forall A \in \Phi_{0}$, either A or $1 A$ Not in Σ)
Σ is complete iff Σ is consistent and $\forall A$ either A or $7 A$ is in Σ
Σ is sound iff $\Sigma \leq T A$
Let m be a modu/structure over \mathcal{L}_{A}

$$
T h(m)=\left\{A \in \Phi_{0} \mid \quad m \in A\right\}
$$

Th (an) is complete (for all structures $O M$)
Note $T A=T h(\mathbb{N})$ is complete, consistent, a sound
$V A L I D=\left\{A \in \Phi_{0} \mid \in A\right\} ;$ smallest theory

Let Σ be a theory
Σ is axiomafizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable of Σ is re. (P. 76 of Notes)

Let \sum be a theory
Σ is axiomatizable it there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\sum=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable $\Leftrightarrow \Sigma$ is re.
Proof \Rightarrow Suppose Σ is axiomatizable, r recursive Define $R(x, y)=$ true iffy y encodes a Γ-LK proof of (the formula encoded by) x R is recursive, so by previous *Theorem, Σ is re.

Let \sum be a theory
\sum is axiomatizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\sum=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable ff Σ is re.
Proof \Rightarrow. Suppose Σ is axiomatizable, r recursive Define $R(x, y)=$ true Af y encodes a Γ-LK proof of (the formula encoded by) x
R is recursive, so by previous * Theorem, Σ is re. \Leftarrow By *Theorem, $\Sigma=$ range of total computable function f

$$
\therefore \quad \Sigma=\{f(0), f(1), f(2), \cdots\}
$$

in other words, there is an effective enumeration of \sum

$$
\Sigma=\left\{A_{3}, A_{1}, A_{2}, A_{3}, \ldots\right\}
$$

$$
\Sigma=\left\{A_{0}, A_{1}, A_{2}, \ldots\right\}
$$

where $f(0)=A_{0}, f(1)=A, \ldots 3$ where f 'Is computable.
Let $\Gamma=\left\{B_{0}, B_{1}, \ldots\right\}$ where $B_{i}=A_{0} \wedge A_{1} \wedge \ldots A_{i}$
Claim Γ is recursive and $E=\{A \mid \Gamma \vDash A\}$

- r is recursive:
given sentence F, check if $F=F_{1} \wedge F_{2} \wedge \ldots \cap F_{m}$
Then check if $\forall i \in(m), F_{i}=A_{i}$ (which can be lore since f II computable)

$$
\text { - } \mathcal{E}=\{A \mid \Gamma \vDash A\}: \quad \forall A \in \Sigma, \quad B_{i}=A_{i}-\wedge A_{i} \vDash A_{i}
$$

