1. COMPLETENESS THEOREM

- 2. COROLLARIES: Lowenheim-Skolem, Compactness (pages 48-49)
- 3. EQUALITY (pages 43-48)

FIRST ORDER SEQUENT CALCULUS LK

Vew Logical Rules for
$$\forall, \exists$$

 \forall -left $A(t), \Gamma \rightarrow \Delta$ \forall -right $\Gamma \rightarrow \Delta, A(b)$
 $\forall x A(x), \Gamma \rightarrow \Delta$ \forall -right $\Gamma \rightarrow \Delta, \forall x A(x)$
 \exists -left $A(b), \Gamma \rightarrow \Delta$ \exists -right $\Gamma \rightarrow \Delta, A(t)$
 $\exists x A(x), \Gamma \rightarrow \Delta$ \exists -right $\Gamma \rightarrow \Delta, A(t)$
 $f \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow \Delta$ $f \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow b$ is a free variable Not appearing in
Lower sequent of rule

SOUNDNESS

<u>petn</u> A first order sequent $A_{1,...,}A_{\mu} \rightarrow B_{1,...,}B_{\mu}$ is valid if and only if its associated formula $(A_{1} - A_{\mu}) = (B_{1}v - vB_{\mu})$ is valid.

Soundness Theorem for LK Every sequent provable in LK is valid TODAY : godels completeness THEOREM

TODAY: LK COMPLETENESS

(MAIN CEMMA) completeness Lemma
If
$$\Gamma \Rightarrow A$$
 is a logical consequence
of a set of (possibly infinite) formulas $\forall \overline{\Phi}$
then there exists a finite subset
 $\Sigma_{1,...,C_{n}}$ of $\overline{\Phi}$ such that
 $\forall C_{1,...,VC_{n}}$, $\Gamma \Rightarrow A$ has a (cut-free) PK proo

* We will assume = Not in Language for NOW

Let
$$\Phi$$
 be a set of sequents or formulas
such that the sequent $\Gamma \rightarrow \Lambda$ is a
logical consequence of $\forall \overline{\Phi}$.
Then there is an $LK - \overline{\Phi}$ proof of
 $\Gamma \rightarrow \Lambda$.

It Proof follows from Completeness Lemma (similar to derivational completeness of PK from Completeness)

Proof of LK completeness Lemma

High Level idea (assume \$ is empty for Now) · As in PK completeness we want to construct an LK proof in revense. · Start inth (> 1 at root, and apply rules in reverse (to break up a formula into one or 2 smaller ones)

Tricky rules are ∃right + Vleft.
 When applying one of these in reverse,
 Need to "guess" a term

Vew Logical Rules for
$$\forall, \exists$$

 \forall -left $A(t), \Gamma \rightarrow \Delta$ \forall -Right $\Gamma \rightarrow \Delta, A(b)$
 $\forall x A(x), \Gamma \rightarrow \Delta$ \forall -Right $\Gamma \rightarrow \Delta, \forall x A(x)$

$$\exists \text{reft} \quad \underline{A(b), \Gamma \rightarrow \Omega} \qquad \exists \text{right} \quad \underline{\Gamma \rightarrow \Omega, A(t)} \\ \exists x A(x), \Gamma \rightarrow \Omega \qquad \qquad \Gamma \rightarrow \Omega, \exists x A(x) \\ \end{array}$$

* A,t are proper * b is a free variable Not appearing in lower sequent of rule

Proof of LK completeness Lemma High Level idea (assume \$ is empty for NOW) · As in PK completeness, we want to construct an LK proof in revense · Start with P=A at root, and apply rules in reverse (to break up a formula into one or 2 smaller ones) Tricky rules are Bright + Vleft. when applying one of these in reverse, Need to "guess" a term • Key is to systematically try all possible terms — without going down a rabbit hole.

 $\exists x (P x \land Q x) \rightarrow \exists x P x \land \exists x Q x$

Example of an LK proof

$$Pa, Qa \rightarrow Pb$$

$$Pa \wedge Qa \rightarrow Pb$$

$$Pa \wedge Qa \rightarrow \exists x P_{x}$$

$$\exists x (P_{x} \wedge Q_{x}) \rightarrow \exists x P_{x}$$

$$Pa \wedge Qa \rightarrow \exists x Q_{x}$$

 $\exists x (P x \land Q x) \rightarrow \exists x P x \land \exists x Q x$

Instead .

JX (PX AQX) -> JXPX A JXQX

Instead

$$Fry = \frac{Pa, Qa \rightarrow Pb, Pfa, \exists xRx}{Pa, Qa \rightarrow Pb, \exists xRx}$$

$$\frac{Pa, Qa \rightarrow Pb, \exists xRx}{Pa, Qa \rightarrow Pb, \exists xRx}$$

$$\frac{Pa, Qa \rightarrow Pb, \exists xRx}{Pa, Qa \rightarrow \exists xQx}$$

$$\frac{Pa, Qa \rightarrow \exists xRx}{Pa, Qa \rightarrow \exists xQx}$$

$$\frac{da}{da} = \frac{da}{da} = \frac{da}{da}$$

 $\exists x (P x \land Q x) \rightarrow \exists x P x \land \exists x Q x$

and
again
and
again
again
Try

$$Pa,Qa \rightarrow Pb, Pfa, Pfb, 3xPx$$

Try
 $Pa,Qa \rightarrow Pb, Pfa, 3xPx$
 $Pa,Qa \rightarrow Pb, 3xPx$
 $Pa,Qa \rightarrow 3xPx$
 $Ax(Px \wedge Qx) \rightarrow 3xPx$
 $Ax(Px \wedge Qx) \rightarrow 3xPx \wedge 3xQx$

and
again
again

$$a_{3}$$

and
 $r_{a},Qa \rightarrow Pb,Pfa,Pfb, 3xRx$
 $r_{a},Qa \rightarrow Pb,Pfa,BxRx$
 $r_{a},Qa \rightarrow Pb,Pfa,BxRx$
 $r_{a},Qa \rightarrow Pb,Pfa,BxRx$
 $r_{a},Qa \rightarrow Pb,Pfa,BxRx$
 $r_{a},Qa \rightarrow Pb,BxRx$
 $r_{a},$

 $\exists x (Px \land Qx) \rightarrow \exists x Px \land \exists x Qx$

Completeness: Proof Search Algorithm

Enumeration of formulas + terms: Since the number of underlying symbols of L 15 finite, there is an enumeration of pairs < A, t, >, < A2, t27, < A2, t32, such that every term and every formula in 2 occur infinitely often in the enumeration More details of enumeration (2 finite) Enumerate all L-formulas A, Az, ... Enumerate : L-terms t₁,... such that every formula/term occurs infinitely often Enumerate all pairs to have same property A Az Az Az Ay ...

Completeness: Proof Search Algorithm
Start with
$$\overline{\Phi}$$
 = set of sequents/formulas, $\Gamma \Rightarrow \Delta$
Want an algorithm that will output an Φ -LK proof of $\Gamma \Rightarrow \Delta$
Whenever $\overline{\Phi} \models \overline{\Gamma} \Rightarrow \Delta$
Initially II is the sequent $\Gamma \Rightarrow \Delta$
At each stage, modify $\overline{\Pi}$ by adding some $A_i \in \overline{\Phi}$ to
antecedent of all sequents in $\overline{\Pi}$, and adding
onto the "frontier" or "actile" sequents in $\overline{\Gamma}$.
Active sequent : a leaf sequent on $\overline{\Pi}$, Not a weakening of $\Lambda \Rightarrow A$
at stage K : we will use the K^{th} pair $\langle A_K \notin K \rangle$ in the

enumeration

Completeness: Proof Search Algorithm Stage K : (1) If Areq, replace r'>d in TI by r', Ar ->d' (2) If A_k atomic, skip this step. Otherwise for all leaf sequents containing A, break up outermost connective of Ar using the appropriate logical rule, and tx if Necessary. Г, ВСС) → Л variable Examples: · A = 3xBx Γ, ∃xB(x)→Δ leep both ra, JxB(2), Bltr r→d, ∃×B(x)

Completeness: Proof Search Algorithm
Stage K:
(1) If
$$A_{k} \in \overline{\emptyset}$$
, replace $\Gamma' \Rightarrow \delta$ in TI by $\Gamma', A_{k} \Rightarrow \delta'$
(2) If A_{k} atomic, skip this step. Otherwise
for all leaf sequents containing A_{k} , break up
outermost connective of A_{k} using the appropriate
logical rule, and t_{k} if Necessary.
Examples:
 $A_{k} = \forall x \ B(x)$
 $F \Rightarrow \delta, B(c)$
 $B(t_{k}), \forall x \ B(x), \Gamma \Rightarrow \delta$
 $B(t_{k}), \forall x \ B(x) \Rightarrow \delta$
 $\Gamma, \forall x \ B(x) \Rightarrow \delta$

Exit when no more active sequents

We want to show:

• If Algorithm halfs, TT is an LK-& proof of

• If Algorithm Never halts, then
$$\forall \bar{\varphi} \succeq \Gamma \Rightarrow \Delta$$

Show: If our algorithm halts duhen run on ϕ , $\Gamma \rightarrow \Delta$ then it produces a Q-LK "provid of r=a

what mill prosp tree look like if thig halls 7

Proof of correctness
We want to show: If Algorithm Never halts, then
$$D \neq \Gamma \Rightarrow A$$

for if it halts but some
for if it halts but some
for user left + the Φ ?
Suppose Algorithm doesn't hatt and let TT be the
(typically infinite) tree that results
Leaf "sequents" of TT look like $\Gamma_{1}^{\prime}C_{1}C_{2}\cdots \to A^{\prime}$
infinite sequence containing
all of Φ each infinitely often
Find a bad path β in the tree:
IF TI finite, β some achive leaf node containing
only atomic formulas. Choose β to be
path from root to this leaf

We want to show: If Algorithm Never halts, then $\forall \bar{\not{\Phi}} \models \bar{\Gamma} \rightarrow \Delta$

We will construct a "term" model \mathcal{M} , + object assignment G from β such that $\mathcal{M} \models \overline{\Phi} \lfloor G \rfloor$ but $\mathcal{M} \models \Gamma \rightarrow \beta$ (and thus our algorithm fails to halt + produce a proof only when $\Gamma \rightarrow \delta$ is not a logical consequence of $\overline{\Phi}$.)

 $f: parts & unitate elemis \rightarrow under element$ $<math>f(\overline{s}, \overline{s}\overline{s}) = \overline{fs}\overline{ss}$

We will construct a "term" model M, + object assignment G from β such that M = €[G] but M ≥ Γ→ D Universe M: all L-terms t (containing only free vars) 6: map vanable à to itself (6(2)=ā) $f^{an}(\bar{r},...\bar{r}_{k}) \stackrel{d}{=} fr_{k}...r_{k}$ p^m (r, ...r_k) = true if and only if Pr...r_k is on the LEFT of some sequent in f

Proof of correctness (cont'd) <u>Claim</u>: For every formula A, M, 6 satisfies A iff A is on the LEFT of some sequent in B, and Mis falsifies A iff A is on the Right of some sequent in B Proof (induction on A) Induction step A= JxB(x) on RigHT By Ind hyp, M, & falsily B(t;) Since ∃xB(x) persists, we have Ut B(t) on Right of some sequent Thus M, 6 falsity BLt) for all *kerms* t

Corollaries of completeness

Corollaries of completeness

(2) First Order compactness Theorem. An infinite set of first order sentences @ 1s unsatisfiable it and only it some finite subset of $\overline{\mathfrak{G}}$ is unsatisfiable Proof Let A be the empty sequent (or any unsatisfiable formula) Dunsatufiable means DEA. Thus (by completeness) there is a \$-LK proof of A proof. Thus there is a finite subset $\overline{\Phi}'$ of $\overline{\Phi}$ such that there is a $\overline{\Phi}'$ -LK proof $\overline{\Phi}$ A : • • is unsatisfiable. (other direction is easy)

Dealing with Equality

So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality Dealing with Equality

So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality

Definition A weak L-structure is an Z-structure where = can be any binary predicate Question: Can we define a finite set of sentences & that defines equaliby? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equaliby?)

Dealing with Equality

Question: Can we define a finite set of sentences & that defines equality? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equality?)

But this is the only counterexample. There is a natural, finite set of axioms that characterizes true equality (up to isomorphism)

Dealing with Equality
Equality Axioms for
$$\mathcal{A}$$
 (\mathcal{E}_{X})
= is (E1. $\forall x(x=x)$)
equiv
E2. $\forall x \forall y (x=y > y=x)$
equiv
E3. $\forall x \forall y \forall z ((x=y \land y=z) > x=z)$
(E4. $\forall x ... \forall x n \forall y_1 ... \forall y_n (x=y_1 \land ... \land x_n=y_n) > f x_1 ... x_n = f y_1 ... y_n$
for all n-ary Eunstein symbols, and for all $n \ge 1$
 \mathcal{E}_{2} . $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
(E4. $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
 \mathcal{E}_{2} . $\forall x_1 ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n)$

equivalence relation preservet by functions and predicates Equality Theorem

Theorem Let & be a set of L-sentences & is satisfiable iff & u & is satisfied by some weak L-structure.

Proof straightforward (see Lecture Notes)

Add these axioms for all terms u,t, u,..,t,...

LI

$$f = t$$

 $f = u$ $f = t$
 $f = u_1, \dots, t_n = u_n \longrightarrow f = f u_1 \dots u_n$
 $f = u_1, \dots, t_n = u_n, P = f = u_1 \dots u_n$
Now an $LK = \Phi$ proof of $\rightarrow A$ means an
 LK proof of A from Φ and from above axioms