announcements

• HWI out tomorrow (Due oct 11) LAST CLASS

· Propositional Compactness Theorem (FINISH)

Derivational Soundness + Completeness & PK

Theorem. Let
$$\overline{\Phi}$$
 be a set of (possibly infinite)
sequents. Then $\overline{\Phi} \models s$ iff
s has a (finite) $PK-\overline{\Phi}$ proof
 $D \models s$ (ff $\overline{\Phi} \models s$

•

Propositional Compactness

Let
$$\overline{\Phi}$$
 be a set of (possibly infinite) formulas
 $\overline{\Phi} \not\models A$ iff A is a logical consequence
of a finite subset $\overline{\Phi}$

Q We'll assume this for Now and prove it after Proof of 3 equivalent forms of compactness as homework Proof (Derivational Soundness/ completeness)

Thus by PK completeness, (*) has a PK proof Derive $\Gamma = A$ from (*) and $= A_{s_1}$, ..., A_{s_k}

Derive
$$\Gamma \rightarrow \Delta$$
 from $\{ \neg A_{s_{i_1}} \rightarrow A_{s_{i_2}} \rightarrow A_{s_{i_3}}, (\mathbf{k}) \}$
PK proof q_i
 $\Gamma, A_{s_1}, A_{s_2}, A_{s_3} \rightarrow \Delta$
 $\Gamma, A_{s_1}, A_{s_2}, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_1}$
 $\Gamma, A_{s_2}, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma, A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$ (cut) $\Gamma \rightarrow A_{s_3}, \Delta$ (weatering)
 $\Gamma \rightarrow A_{s_3}, \Delta$ (cut) $\Gamma \rightarrow A_{s_3}, \Delta$

Proof (Propositional compactness) Suppose $\overline{\Phi} \neq A$. Then $\overline{\Phi}$, \overline{A} is unsatisfiable show: If Y's UNSAT, then some finite subset of Y's UNSAT (Form 1) Pf sketch Assume the set of underlying atoms in V is countable: P1, P2, • Make decision tree that queries p, at layer 1, then P2 at layer z, etc.

 Each path in T corresponds to a complete touth assignment

For every node v of T, remove subtree rooted below v if partial truth assignment from root to v falsifies some formula fe P. Label v by f

• Every path in T' is finite (since ψ unsat, so \forall truth ass to all vars, some $f \in \psi$ is falsified, and each $f \in \psi$ is finite)

- By König's Lemma, T' is finite

König's Lemma If T'is a rooted
binary tree, where every branch/path
of T is finite, Then T'is finite.
Thus, the formulas
$$\Psi' \in \Psi$$
 labelling the leaves
of T' form a finite subset of Ψ ,
and thus Ψ' is WSAT + finite
subset of Ψ .

(2) Shells (i.e.
$$P,Q,R,<,\leq$$
)

o wonstant (o-ary function symbol)
 s unary function symbol
 +, binary function symbols
 = binary predicate symbol

Terms over Z

Terms over Z

Examples of terms (0, s, f, +,)

$$o$$
-ary unary binary,
 $fossso, +xfyz, +ab sso$
 $f(9ssso) + f(y,z)$ (alb) sso

FIRST ORDER FORMULAS OVER Z

Example: Propositional formulas are FO Formulas

Example: FO Formulas over Z.

() Existence of infinitely many primes

Vx =y (y>x and y is prime)

Example: FO Formulas over
$$\mathcal{J}_{A}$$

(1) Existence of infinitely many primes
what to say: $\forall x \exists y$ ($y > x$ and y is prime)
 \mathcal{J}_{a} prime: $\forall z, z'$ ($z, z' \equiv z \Rightarrow z \cdot z' \neq y$)
(*) $\forall z \forall z'$ ($(-(z=0) \land \neg (z=s0) \land \neg (z'=s0))$
 $- \neg (z \cdot z' = y)$)

A -> B abbrevaks - A B

Example: FO Formulas over
$$\mathcal{J}_{A}$$

() Existence of infinitely many primes
what to say: $\forall x \exists y \quad (y \ge x \text{ and } y \text{ is prime})$
 $\forall \text{ is prime} : \forall z, z' \quad (z, z' \ge z \implies z \cdot z' \neq y)$
 $\forall z \forall z' \quad ((-(z = 0) \land \neg (z = s0) \land \neg (z' = s0)))$
 $\rightarrow \neg (z \cdot z' = \gamma))$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(**)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$
 $(*)$

() Existence of infinitely many primes Want to express: $\forall x \exists y (y \text{ is prime and } y > x)$ A B

 $A: \forall z, z' \quad (z, z' \ge z \implies z \cdot z' \neq y)$ $\forall z \forall z' \quad \left(\neg(z = 0) \land \neg(z = s0) \land \neg(z' = s0)\right) \Rightarrow \neg(z \cdot z' = y)\right) \quad (*)$ $B: \neg(x = y) \land \exists w (x + w = y) \qquad (**)$

Whole thing: Yx Zy (*) ~ (***)

(2) Twin Prime Conjecture There exists infinitely many pairs of numbers, (x, x') such that x' = x+2 and both x and x' are prime

Example: FO Formulas in La

3 Fermat's Last Theorem

Example : FO Formulas in NEIVER 55 15 . TOUTO FOR HUTDON IS NEIVER Swauscoc was - zown mesozetisco z serves 23 Diro óusiar óusia. Suráners ága i iray aulywic 15. 23 Jiveral & aerlinde 15. חותיה Tan. בכתו ל נאט היה מצבה התנה למי. ל לי בעל 3 Fermat's Last Ilougations autoranvtrimque defectus, & a fimilibus auferaneirosomiun7wr, à ai d'us ouumSterres monion tur fimilia, fient 5 Q. aquales 16 N. & fit 1N. 4 Eritägitut alter quadratorum 314 alter vero The & vtriulque fumma eft the feu ບ ຍໍາເວຣຣຣກາຍເຕາໂລງ ກາວເ ພຣາລ໌ສະເຊ ເວັ. ແລະ ອີຣາາ ອິນລ໌ກະຄວາ ກະຮັດບ່ຽນກູ G. OBSERVATIO DOMINI PETRI DE FERMAT. Vbum autem in duos cubos 5 aut quadratoquadratum in duos quadratoquadratos 16. Se vrerque quadratus est. Vonm autem in anos envos s aut quaaratoquaaratum in auos quaaratoguaaratos & generaliter nullam in infinitum Vltra quadratum Potestatem in duos eius-Yn=3 dem nominis fas est diuidere cuins rei demonstrationem mirabilem sane detexi. Ester andia man to is mperator de Hane marginis exiguitas non caperet. באניד פו: לים דרדף א נשייטני. דרד איש שיאוי א דע שאטידטע דאלטפע כי צוטר אין דע אדיאא נה להעיי לאית הדב אבי לבו עי להעיי צא א דצ לאמר VRSVS oporteat quadratum 16 R diuidere in duos quadratos. Ponatur rurlus primi latus 1 N. alterius verò quotcunque numerorum cum defectu tot conjectured by Fermat 1637 in margin of his copy of Arithmetica

Example: FO Formulas in Lo

3 Fermat's Last Theorem Fermat's equation: $X^{n} + y^{n} = Z^{n}$ This equation has no solutions in integers for N>3.

Finally proven by Andrew wills

Example : FO Formulas in LA
(3) Fermat's Last Theorem (actually Andread
Wiles Theorem)

$$\forall n = 3$$
 ($\forall a, b, c$ $a^{+}b^{-} \neq c^{-}$)
Problem: How to say a^{-} ?
(we'll see (after how to do this!)

FREE/BOUND VARIABLES

· An occurrence of x in A is bound it x is in a subformula of A of the form VrB, or JrB (otherwise x-1s free in A) Example By (x=y+y) $P_X \wedge \forall x (\neg (x + s_X = x))$ · A formula/term is closed if it contains no free variables · A closed formula is called a sentence

Example

$$J_{A} = \{\overline{0}, +, \cdot, S; = \}$$

$$X_{A} = \{\overline{0}, +, \cdot, S; = \}$$

$$X_{A} = \{\overline{0}, +, \cdot, S; = \}$$

$$X_{A} = \{\overline{0}, +, \cdot, S; = \}$$

$$M = \{\overline{0}, +, \cdot, S = \overline{0} \in [N]$$

$$T_{A} = \{\overline{0}, +, \cdot, S = \overline{0} \in [N]$$

$$T_{A} = \{\overline{0}, +, \cdot, S; = \overline{0}\}$$

$$M = \{\overline{0$$

Ux Jx (

 $J_{A} = \{0, s, t, \cdot\} = \}$

$$(1) \mathcal{M} = \mathcal{N}, \quad 0 = \mathcal{O} \in IN$$

S: successor. i.e. $s(z) = 3, ---$
+: plus. ie, $+(0,i) = i, +(2,3) = 5$, etc.
•: times

$$\begin{array}{c} \hline & M = \begin{cases} \hline & & \\ \\ & S(\blacksquare) = 0 \\ & S(\bullet) = 17 \\ & S$$

How to evaluate formulas that contain free variables?

Defn An object assignment 6 for a model M is a mapping from variables to M

Evaluation of formulas over M, 6 Let A be an Z-formula. M = A [6] (M satisfies A under 6) iff (a) $\mathfrak{M} \models \mathsf{Pt}_{\mathsf{r}} \cdot \mathsf{t}_{\mathsf{r}}[\mathsf{G}] \text{ iff } \langle \mathsf{t}_{\mathsf{r}}^{\mathsf{m}}(\mathsf{G}) \dots, \mathsf{t}_{\mathsf{r}}^{\mathsf{m}}[\mathsf{G}] \rangle \in \mathsf{P}^{\mathsf{m}}$ (6) $M \models (s=t)[6]$ (ff $s^{an}[6] = t^{an}[6]$ (c) M = 7 A [G] iff Not M = A [G] (d) $\mathcal{M} \models (A \lor B)[c]$ iff $\mathcal{M} \models A[c] \text{ or } \mathcal{M} \models B[c]$ (e) $\mathcal{M} \models (A \land B)[c]$ iff $\mathcal{M} \models A[c]$ and $\mathcal{M} \models B(c)$ (f) $M \models \forall x \land [G]$ iff $\forall m \in M \models \land [G(M_x)]$ (g) ME JXA [6] iff JmeM MEA[6(?)]

$$(\forall x) (\dot{x} + \dot{x}) = ssot \dot{x}$$

(x + x = sso + x)For a = 0,1, 2, - -Evaluate 3x (X+ x = sso +x) [x/ For b = 0, 1.,-2... Evaluate (x+x+sso+x)[][(k)]

Example $d = \{i, k, i\}$ M = (IN, i) $R^{M}(m,n)$ iff $m \le n$ M ⊨ ∀x ∃y R(x,y) e by M Then M = Jy Vx R(x,y) - but Jy Vx R(x,y) - Is also satisfielde

IMPORTANT DEFINITIONS Les A be a f.o. formula our x.

(4) A ← B (A and B are Logically equivalent) iff ∀M ∀6 M ⊨ A[6] iff M ⊨ B[6]

A = B and B = A

Examples $(\forall x ? x \vee \forall x . Q x) \neq \forall x (P x \vee Q x)$ Vx(AxvBx) = VxAxv VxBx (2)

 $\mathcal{I} = \{2; P, Q, A, B\}$ \mathcal{N}

$$\frac{\text{Example}}{\text{Earlier formula A:}}$$

$$\frac{\forall x \forall z \quad (\exists z' \quad (\neg(z' = 0) \land \exists z + z' = x)) \rightarrow \exists z'' \quad (sz + z'' = x))$$

• true when
$$M = W$$
 so A - is satisfiable

• false when
$$\mathcal{M} = \left(M = \{0, 1, 2\} \atop{s_{1} > 2} S_{0} = 1 \\ x = 2 = 0 \\ x + y = 0 \\ x$$

l

$$\frac{Gxample}{\forall x \forall y (fx = fy)} \stackrel{?}{\models} \frac{x = y}{x = y} \quad \begin{array}{l} \log hey \\ M = \xi_{0} | 1, 2 \end{array}$$

$$M = \xi_{0} | 1, 2 \end{array}$$

$$M = \xi_{0} | 1, 2$$

$$f(x) = 0 \quad \forall x \in \xi_{0} | 1, 2$$

$$\begin{cases} G(x) = 1 \\ G(y) = 2 \end{array}$$

$$g(x) = f(y) = 0 \quad G(y) = 2$$

N

$$\frac{Grample}{V \times V Y} = \frac{Grample}{F \times F Y}$$
Let $M = \{0, 1\}$

$$M: \quad f(0) = 0$$

$$f(1) = 0$$
then $M \models V \times V Y (F \times F Y)$
but $M \models X = Y (since 0 \neq 1)$

Substitution

For readability, we will write $f = + SSO \times as sso + \times$

Let s,t be Z-terms.

$$t(s_{x})$$
 : substitute x everywhere by s
 $A(s_{x})$: substitute all free occurrences
of x in A by s
emma $(t(s_{x}))^{m}(G) = \{ \stackrel{m}{=} G(\frac{s_{x}}{x}) \}$

q obtain New object assignment G' where G'(x) = s^m Then evaluate t under M, 6'

Substitution Cont'd

Need to be more careful when making substitutions into formulas

Example: A:
$$\forall y = (x = y + y)$$

 $A(x \neq x) : \forall y = (x + y = y + y)$
Defn term t is freely substitutable for x in A
iff there is No subformula in A of the
form $\forall y B$ or $\exists y B$ where y occurs in t

Substitution Theorem

If t is freely substitutable for x in A then $\forall \mathcal{M} \forall \mathcal{G}$ $\mathcal{M} \models A(\overset{t}{\times})[\mathcal{G}]$ iff $\mathcal{M} \models A[\mathcal{G}(\overset{t}{\leftarrow} \overset{t}{\times})]$

FIRST ORDER SEQUENT CALCULUS LK

FIRST ORDER SEQUENT CALCULUS LK

Lines are again sequents
A.,..., A_k
$$\rightarrow$$
 B,..., B_k
where each A_i, B_j is a proper Z-formula
RULES
OLD RULES OF PIK
PLUS NEW RULES FOR \forall , A
like a large Large OR
AND

Vew Logical Rules for
$$\forall, \exists$$

 \forall -left $A(t), \Gamma \rightarrow \Delta$ \forall -right $\Gamma \rightarrow \Delta, A(b)$
 $\forall x A(x), \Gamma \rightarrow \Delta$ \forall -right $\Gamma \rightarrow \Delta, \forall x A(x)$
 \exists -left $A(b), \Gamma \rightarrow \Delta$ \exists -right $\Gamma \rightarrow \Delta, A(t)$
 $\exists x A(x), \Gamma \rightarrow \Delta$ \exists -right $\Gamma \rightarrow \Delta, A(t)$
 $f \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow \Delta$ $f \rightarrow \Delta, \exists x A(x)$
 $r \rightarrow b$ is a free variable Not appearing in
Lower sequent of rule

$$\frac{\text{Example of an LK proof}}{Pa \Rightarrow Pa}$$

$$\frac{Pa \Rightarrow Pa}{Pa, Qa \Rightarrow Pa}$$

$$\frac{Qa \Rightarrow Qa}{Pa, Qa \Rightarrow Qa}$$

$$\frac{Qa \Rightarrow Qa}{Pa, Qa \Rightarrow Qa}$$

$$\frac{Pa, Qa \Rightarrow Qa}{Pa, Qa}$$

SOUNDNESS

<u>petn</u> A first order sequent $A_{1,...,}A_{\mu} \rightarrow B_{1,...,}B_{\mu}$ is valid if and only if its associated formula $(A_{1} - A_{\mu}) = (B_{1}v - vB_{\mu})$ is valid.

Soundness Theorem for LK Every sequent provable in LK is valid Proof of Lemma

go through each rule $\Gamma \rightarrow \Delta, A(a) \leftarrow S$ Example: Y-right rule $\Gamma \rightarrow \Delta, \forall x \land A(x) \not\leftarrow S'$ Note: a in cannot occur in cannot occur lower sequent lower sequent thus a occur cant occur cant occur $\begin{array}{c} \textbf{b} \leftarrow \boldsymbol{\Gamma} = \boldsymbol{B}_{1} \dots \boldsymbol{B}_{q} \\ \boldsymbol{\Delta} = \boldsymbol{C}_{1} \dots \boldsymbol{C}_{q} \end{array}$ $A_{s}: B_{1} \dots \square B_{1} \supseteq (v \dots \neg G_{s'} \vee A(\alpha)) \text{ in and} B_{s'}: B_{1} \dots \square B_{s'} \supseteq (v \dots \neg G_{s'} \vee A(\alpha)) \text{ in and} B_{s'}:$

Pf by induction on the number of
sequents in proof.
Axion
$$A \rightarrow A$$
 is valid
Induction step: use previous sandness
Lemma

Soundness (Proof): By induction on the number of sequents in proof

Example:
$$\exists Left$$

Assume: $A(b), \Gamma \Rightarrow \Delta$ has an Lik proof and is valid
show: $\exists x A(x), r \Rightarrow \Delta$ also Valid
By defn $\overline{A(b)} \times \overline{\Gamma}, v ... \vee \overline{\Gamma}_{e} \vee \Delta_{i} v ... \vee \Delta_{k}$ -is valid
let \mathfrak{M} be any structure, \mathfrak{G} any object assignment.
Show: $\mathfrak{M} \not\models \neg \exists x A(x) \vee \overline{\Gamma}, v ... \vee \overline{\Gamma}_{e} \vee \Delta_{v} ... \vee \Delta_{k}$ [G] (4)
 $\underline{casa1}$ $\mathfrak{M} \not\models \overline{\Gamma}, v ... \vee \overline{\Gamma}_{i} \vee \Delta_{i} \vee ... \vee \Delta_{k}$ [G], Then (4) holds
 $\underline{case2}$ (ase 1 does not hold.

Example: Eleft
Assume: A(6),
$$\Gamma \Rightarrow \Delta$$
 has an LK proff and is valid
show: $\exists x A(x), n \Rightarrow \Delta$ also Valid
By defn $\overline{A(b)} v \overline{\Gamma}_i v ... v \overline{\Gamma}_i v \Delta_i v ... v \Delta_k r v volud
(et M be any structure, 6 any object assignment.
Show: $\mathcal{M} \models n \exists x A(x) v \overline{\Gamma}_i v ... v \overline{\Gamma}_k v \Delta_i v ... v \Delta_k [G]$ (4)
case 1 $\mathcal{M} \models \overline{\Gamma}_i v ... v \overline{\Gamma}_k v \Delta_i v ... v \Delta_k [G]$. Then (4) holds
case 2 case 1 does not hold.
Since b does not occur in Γ or Δ ,
 $\mathcal{M} \models \overline{\Gamma}_i v ... v \overline{\Gamma}_k v \Delta_i v ... v \Delta_k [G(\overline{T}_k)]$ for all $m \in \mathcal{M}$
Since $A(b), \Gamma \Rightarrow \Delta$ is valid, $\mathcal{M} \models \overline{A(b)} [G[\mathcal{M}_G]] V m \in \mathcal{M}$
Thus $\mathcal{M} \models n \exists x \Delta(x) [G], d - thus \exists x \Delta(x), \Gamma \Rightarrow \Delta rs valid$$