Announcements

- HW1 out tomorrow
 (Due Oct 11)
LAST CLASS

• Another proof system for propositional logic: PK
 Soundness of PK
 Completeness of PK

• Propositional Compactness Theorem

Pages 9–17 of Lecture Notes
Today

• Propositional Compactness Theorem (Finish)

• First Order Logic
 Language/Syntax
 Semantics: Models

(pages 18-27 of course notes)
Definition Let Φ be a set of sequents, S a sequent. A $\text{PK} - \Phi$ proof of S is a PK-proof of S from Φ and axioms of PK. (also written as $\Phi \vdash S$)

Theorem Let Φ be a set of (possibly infinite) sequents. Then $\Phi = S \iff S$ has a (finite) $\text{PK} - \Phi$ proof

$\Phi = S \iff \Phi \vdash S$
Propositional Compactness

Theorem (Form 2, see notes for 2 other equivalent forms)

Let Φ be a set of (possibly infinite) formulas $\Phi \models A$ iff A is a logical consequence of a finite subset of Φ

We'll assume this for now and prove it after proof of 3 equivalent forms of compactness as homework
Proof (Derivational Soundness/Completeness)

By compactness, it suffices to prove the case where Φ is finite.

- Let $\Phi = \{ S_1, \ldots, S_k \}$, and suppose $\Gamma \Rightarrow \Delta$ is a logical consequence of $\{ S_1, \ldots, S_k \}$. Thus

 $$(\ast) \quad \Gamma, A_{S_1}, \ldots, A_{S_k} \Rightarrow \Delta \quad \text{is valid}$$

- Thus by PK completeness, (\ast) has a PK proof.

 Derive $\Gamma \Rightarrow \Delta$ from (\ast) and $\Rightarrow A_{S_1}, \ldots, A_{S_k}$.
Derive $\Gamma \Rightarrow \Delta$ from $\{ \rightarrow A_{s_1}, \rightarrow A_{s_2}, \rightarrow A_{s_3}, (*) \}$
Proof (Propositional Compactness)

Suppose \(\Phi \models A \). Then \(\Phi, \neg A \) is unsatisfiable.

Show: If \(\psi \) is UNSAT, then some finite subset of \(\psi \) is UNSAT (Form 1)

Pf sketch: Assume the set of underlying atoms in \(\psi \) is countable: \(P_1, P_2, \ldots \).

- Make decision tree that queries \(P_i \) at layer 1, then \(P_j \) at layer 2, etc.
• Each path in T corresponds to a complete truth assignment

• Prune T to T':

 For every node v of T, remove subtree rooted below v if partial truth assignment from root to v falsifies some formula $f \in \Psi$. Label v by f

• Every path in T' is finite (since Ψ unsat, so \forall truth ass to all vars, some $f \in \Psi$ is falsified, and each $f \in \Psi$ is finite)

• By König's Lemma, T' is finite
König's Lemma. If T' is a rooted binary tree, where every branch/path of T is finite, then T' is finite.

Thus, the formulas $\psi' \subseteq \psi$ labelling the leaves of T' form a finite subset of $\varnothing \psi$, and thus ψ' is unsat + finite subset of ψ.

FIRST ORDER LOGIC

Underlying language L specified by:

1. A set of n-ary function symbols (i.e., $f, g, h, +, \cdot$)
 - 0-ary function symbols are called constants

2. A set of n-ary predicate symbols (i.e., $P, Q, R, <, \leq$)

Plus:
- Variables: $x, y, z, \ldots a, b, c, \ldots$
- $\neg, \vee, \wedge, \exists, \forall$
- Parentheses ($,)$

Built in symbols
Example 1 L_A (language of arithmetic)

$L_A = \{ 0, s, +, \cdot ; = \}$

- function symbols
- relation symbols

0 constant (0-ary function symbol)

s unary function symbol

+, \cdot binary function symbols

= binary predicate symbol
Terms over \mathcal{L}

(1) Every variable is a term

(2) If f is an n-ary function symbol, and t_1, \ldots, t_n terms, then $f(t_1, \ldots, t_n)$ is a term
Terms over \(\mathcal{L} \)

(1) Every variable is a term

(2) If \(f \) is an \(n \)-ary function symbol, and \(t_1, \ldots, t_n \) terms, then \(f(t_1, \ldots, t_n) \) is a term

Examples of terms (0, 1, s, f, +, •)

\[
\begin{align*}
\text{0-ary} &: 0, s, f, +, \cdot \\
\text{Unary} &: f(0), f(s(x)), f(y) \\
\text{Binary} &: t + f(y, z), t \\
\end{align*}
\]
First order formulas over L

(1) $p_{t_1 \ldots t_n}$ is an atomic L-formula, where p is an n-ary predicate in L, and $t_1 \ldots t_n$ are terms over L.

(2) If A, B are L-formulas, so are $
eg A$, $(A \land B)$, $(A \lor B)$, $A \land A$, $\exists x A$.
Example: Propositional formulas are FO Formulas

$\mathcal{L}^{\text{prop}}$:

1. No function symbols
2. 0-ary predicate symbols P_1, P_2, \ldots (are propositional atoms)

Plus $\land, \lor, \neg, (),$,

Since there are no function symbols, and all predicate symbols have 0-arity, propositional formulas have no variables, terms, or \forall, \exists.
Example: FO Formulas over \(\mathbb{Z}_A \)

1. Existence of infinitely many primes

\[\forall x \exists y \ (y > x \quad \text{and} \quad y \text{ is prime}) \]
Example: FO Formulas over \(\mathcal{L}_A \)

1. Existence of infinitely many primes

want to say: \(\forall x \exists y \ (y > x \text{ and } y \text{ is prime}) \)

\[y \text{ is prime} : \forall z, z' (z, z' \geq 2 \Rightarrow z \cdot z' \neq y) \]
Example: FO Formulas over \(\mathbb{A} \)

1. Existence of infinitely many primes

 Want to say: \(\forall x \exists y \left(y > x \text{ and } y \text{ is prime} \right) \)

 \(y \text{ is prime} : \forall z, z' \left(z, z' \geq 2 \Rightarrow z \cdot z' \neq y \right) \)

 \(\left(\forall z \forall z' \left(\left(z \neq 0 \vee z' \neq 0 \right) \land \left(z = 2 \lor z' = 2 \right) \Rightarrow (z \cdot z' = y) \right) \right) \)

 \(\Rightarrow (y = \gamma) \)

 \(A \rightarrow B \) abbreviates \(\neg A \lor B \)
Example: FO Formulas over \mathbb{Z}_A

1. Existence of infinitely many primes

<table>
<thead>
<tr>
<th>want to say: $\forall x \exists y$ ($y > x$ and y is prime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y is prime: $\forall z, z'$ ($z, z' \geq 2 \Rightarrow z \cdot z' \neq y$)</td>
</tr>
<tr>
<td>(**) $\forall z, z'$ ($z, z' \geq 2 \Rightarrow z \cdot z' \neq y$)</td>
</tr>
<tr>
<td>(**) $\forall z \forall z'$ ($z, z' \geq 2 \Rightarrow z \cdot z' \neq y$)</td>
</tr>
<tr>
<td>(**) $y > x$: $\exists y$ such that $y = x + w$ (where $w = y$)</td>
</tr>
</tbody>
</table>
Example: FO Formulas over \mathcal{L}_A

1. Existence of infinitely many primes

Want to express: $\forall x \exists y \left(y \text{ is prime and } y > x \right)$

A: $\forall z, z' \left(z, z' \geq 2 \implies z \cdot z' \neq y \right)$

$\forall z \forall z' \left(\neg (z = 0) \land \neg (z = 50) \land \neg (z' = 0) \land \neg (z' = 50) \right) \implies \neg (z \cdot z' = y)$

B: $\neg (x = y) \land \exists w \left(x + w = y \right)$

Whole thing: $\forall x \exists y \left(\star \right) \land \left(\star \star \right)$
Example: FO Formulas over \mathbb{Z}_A

2. Twin Prime Conjecture

There exists infinitely many pairs of numbers, (x, x') such that $x' = x + 2$ and both x and x' are prime.
Example: Fo Formulas in LaTeX

(3) Fermat’s Last Theorem

\[\forall n \geq 3 \forall a, b, c (n > 2 \implies a^n + b^n \neq c^n) \]
Fermat's Last Theorem

$$A^n + B^n = C^n$$

any integer for which $$n$$ is an integer greater than 2.

ancient Greek text

3rd century AD

example: For in
Example: FO Formulas in

Fermat's Last Theorem

Conjectured by Fermat in 1637

in margin of his copy of

Arithmetica

\[a^n + b^n = c^n \]

Conjectured by Fermat in 1637 in margin of his copy of Arithmetica.
Example: Fo Formulas in LaTeX

3 Fermat's Last Theorem

Fermat's equation:

\[x^n + y^n = z^n \]

This equation has no solutions in integers for \(n \geq 3 \).

Finally proven by Andrew Wiles.
Example: Fo Formulas in \(\LaTeX \)

3 Fermat’s Last Theorem (actually Andrew Wiles’ theorem)

\[\forall n \geq 3 \ (\forall a, b, c \ a^n + b^n \neq c^n) \]

Problem: How to say \(a^n \) ?

(we’ll see later how to do this!)
FREE/BOUND VARIABLES

- An occurrence of x in A is bound if x is in a subformula of A of the form $\forall x \exists \exists x \beta$, or $\exists x \beta$ (otherwise x is free in A)

 Example: $\exists y (x = y + y)$
 $P \land \forall x (\neg (x + 5x = x))$

- A formula/term is closed if it contains no free variables
- A closed formula is called a sentence
SEMANTICS OF FO LOGIC

An Ł -structure M (or model) consists of:

1. A nonempty set M called the universe (variables range over M)

2. For every n-ary function symbol f in $Ł$, an associated function $f^M : M^n \to M$

3. For each n-ary relation symbol P in $Ł$, an associated relation $P^M \subseteq M^n$

* Equality predicate $=$ is always true equality relation on M. $M = \mathbb{N} \iff \{ (i, i) \mid i \in \mathbb{N} \}$
Example

\[L_A = \{ \overline{0}, +, \cdot, s \} \]

1. \(\mathbb{N} \): standard model of \(L_A \)

\[M = \mathbb{N} \]

\[\overline{0} = 0 \in \mathbb{N} \]

\(+, \cdot, s \) are usual plus, times, successor functions

Jumping ahead a bit: Evaluation of a formula in \(\mathbb{N} \)

\[\forall x \forall z (\exists \ z' (x = z' + z \land (0 = z' \lor \exists z'' (s2 + z'' = x))) \]

Says: \(\forall x \forall z \text{ if } x > z \text{ then } x \text{ can be written as } z + 1 + (\text{some other } z'') \in \mathbb{N} \)
Example

\[L_A = \{0, s, t, * \} = 3 \]

1. \(M = \mathbb{N} \), \(0 = 0 \in \mathbb{N} \)

 \(s: \) successor, i.e. \(s(2) = 3, \ldots \)

 \(t: \) plus, i.e. \(t(0, i) = i, \quad t(2, 3) = 5, \ldots \)

 \(\times: \) times

2. \(M = \{ \blacklozenge, \bullet, \ast \} \)

 \(0 = \blacklozenge \)

\[s(\blacklozenge) = \bullet \]
\[s(\bullet) = \blacklozenge \]
\[s(\ast) = \ast \]
How to evaluate formulas that contain free variables?

Defn An object assignment σ for a model M is a mapping from variables to M.
Definition: Evaluation of terms/formulas on M, s

Let M be an L-structure, s an object assignment for M

Evaluation of terms over M, s

(a) $^m_x [c] = s(x)$ for all variables x

(b) $(t_1, \ldots, t_n)^m [c] = f^m (t_1^m [c], \ldots, t_n^m [c])$

Example 6: $x_1 \rightarrow 5$ $x_2 \rightarrow 7$

$s(x_1 + x_2) [c] = 13$
Evaluation of formulas over \(M, \alpha \)

Let \(A \) be an \(L \)-formula. \(M \models A[\alpha] \)

\[(M \text{ satisfies } A \text{ under } \alpha) \iff \]

(a) \(M \models \text{Pt}_i \ldots \text{Pt}_n[\alpha] \iff \langle t^m_1[\alpha], \ldots, t^m_n[\alpha] \rangle \in \text{P}^m \)

(b) \(M \models (s = t)[\alpha] \iff s^m[\alpha] = t^m[\alpha] \)

(c) \(M \models \neg A[\alpha] \iff \text{not } M \models A[\alpha] \)

(d) \(M \models (A \lor B)[\alpha] \iff M \models A[\alpha] \text{ or } M \models B[\alpha] \)

(e) \(M \models (A \land B)[\alpha] \iff M \models A[\alpha] \text{ and } M \models B[\alpha] \)

(f) \(M \models \forall x A[\alpha] \iff \forall m \in M \; M \models A[\alpha(\beta X)] \)

(g) \(M \models \exists x A[\alpha] \iff \exists m \in M \; M \models A[\alpha(\alpha X)] \)
For x, y, z.

Evaluate $\exists x \ (x + x = 550 + x) \ [\%]$

For $b = 0, 1, 2, \ldots$

Evaluate $(x + x + 550 + x) \ [\%] \ [\%]$
Example $\mathcal{L} = \{ ; R, = \}$

$M = (\mathbb{N}, \leq, =)$

$R_M(m, n) \text{ if } m \leq n$

Then

$M \models \forall x \exists y R(x, y)$

$M \not\models \exists y \forall x R(x, y)$

$satisfiable$ by M

but $\exists y \forall x R(x, y)$ is also $satisfiable$
IMPORTANT DEFINITIONS

Let A be a f.o. formula over X.

1. A is satisfiable iff there exists a model M and an object assignment σ such that $M \models A[\sigma]$.

2. A set of formulas Φ is satisfiable iff $\exists M, \sigma$ such that $M \models \Phi[\sigma]$ [for all $A \in \Phi$].

3. $\Phi \models A$ (A is a logical consequence of Φ) iff $\forall M, \sigma$ if $M \models \Phi[\sigma]$ then $M \models A[\sigma]$.

4. $\models A$ (A is valid) iff $\forall M, \sigma$ $M \models A[\sigma]$.
④ $A \iff B$ (A and B are logically equivalent)

\[A \models B \text{ and } B \models A \]
Examples

1. \((\forall x P_x \lor \forall x Q_x) \vdash \forall x (P_x \lor Q_x)\)

2. \(\forall x (A_x \lor B_x) \vdash \forall x A_x \lor \forall x B_x\)

\(\mathcal{L} = \{\exists; P, Q, A, B\}\)
Example

Earlier formula A:

$$
\forall x \forall z \exists z' \forall (z = z' \land (x = x')) \supset
\exists z'' (yx'' + z'' = x))
$$

says for every x,z if $x > z$ then
we can write x as $(z+1) + z''$ for some z''

- true when $M = \mathbb{N}$ so A is satisfiable
- false when $M = (M = \{0, 1, 2\}$ so

$$
\begin{align*}
&50 = 1 \\
&51 = 2 \\
&52 = 0 \\
&\text{all others} \\
&x+y = 0
\end{align*}
$$
Example

\[\forall x \forall y \left(f(x) = f(y) \right) \]

\[\Rightarrow \quad x = y \]

\[M = \{0, 1, 2\} \]

\[f(x) = 0 \quad \forall x \in \{0, 1, 2\} \]

\[\forall x \forall y \quad f(x) = f(y) = 0 \]

But

\[g(x) = 1 \]
\[g(y) = 2 \]
Example

\[\forall x \forall y \ (f(x) = f(y)) \quad ? \]
\[x = y \quad \text{No} \]

Let \(M = [0, 1] \)

\[\text{On:} \quad f(0) = 0 \]
\[f(1) = 0 \]

Then \(M = \forall x \forall y \ (f(x) = f(y)) \)

but \(M \not\models x = y \) (since \(0 \neq 1 \))
Substitution

Let s, t be L-terms.

$t(s/t_x)$: substitute x everywhere by s

$A(s/t_x)$: substitute all free occurrences of x in A by s

For readability, we will write

$t = t \textsc{ss0} x$ as $\textsc{ss0} + x$
Substitution

Let s, t be L-terms.

$t(s/x)$: substitute x everywhere by s

$A(s/x)$: substitute all free occurrences of x in A by s

\[(t(s/x))^M[G] = t^M[G(s^{M[G][x]}/x)] \]

Lemma

Substitute x for s to get t'
then evaluate t' under M,s

Obtain new object assignment G' where $G'(x) = s^M$
Then evaluate t under M,G'
Substitution Cont'd

Need to be more careful when making substitutions into formulas

Example:
\[A : \forall y \, (x = y + y) \]
\[A(\frac{x+y}{x}) : \forall y \, (x + y = y + y) \]

Defn term \(t \) is \underline{freely substitutable} for \(x \) in \(A \) iff there is no subformula in \(A \) of the form \(\forall y B \) or \(\exists y B \) where \(y \) occurs in \(t \)
Substitution Theorem

If \(t \) is freely substitutable for \(x \) in \(A \) then \(\forall M A \in_6 \)

\[M \models A(t/x)[6] \text{ iff } M \models A[6 \left(\frac{\text{tm}[6]}{x} \right)] \]
Easy way to avoid this problem (of making a "bad" substitution):

2 types of variables
 free variables \(a, b, c, \ldots \)
 bound variables \(x, y, z, \ldots \)

Proper formula: every free variable occurrence is of type free, and every bound variable occurrence is of type bound

Proper term: no variables of type bound
Lines are again sequents

\[A_1, \ldots, A_k \rightarrow B_1, \ldots, B_e \]s

where each \(A_i, B_j \) is a proper \(L \)-formula

\[A_s : A_1 \wedge A_2 \wedge \ldots \wedge A_k \rightarrow B_1 \vee \ldots \vee B_e \]
Lines are again sequents

\[A_1, \ldots, A_k \implies B_1, \ldots, B_e \]

where each \(A_i, B_j \) is a proper \(L \)-formula

RULES
OLD RULES OF PK

PLUS NEW RULES FOR \(\forall, \exists \)

like a large AND

Large OR
New Logical Rules for \forall, \exists

\forall-left: \[
\frac{A(t), \Gamma \rightarrow \Delta}{\forall x \ A(x), \Gamma \rightarrow \Delta}
\]

\forall-right: \[
\frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall x \ A(x)}
\]

\exists-left: \[
\frac{A(t), \Gamma \rightarrow \Delta}{\exists x \ A(x), \Gamma \rightarrow \Delta}
\]

\exists-right: \[
\frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists x \ A(x)}
\]

* A, t are proper
* b is a free variable not appearing in lower sequent of rule
Example of an LK proof

\[
\begin{align*}
\text{Pa} \Rightarrow \text{Pa} \\
\text{Pa, Qa} \Rightarrow \text{Pa} & \Rightarrow \text{Pa, Qa} \\
\text{Pa} \land \text{Qa} \Rightarrow \text{Pa} \\
\text{Pa} \land \text{Qa} \Rightarrow \exists x P_x & \Rightarrow \exists x (P_x \land Q_x) \\
\exists (P_x \land Q_x) & \Rightarrow \exists x P_x \\
\exists x (P_x \land Q_x) & \Rightarrow \exists x P_x \land \exists x Q_x
\end{align*}
\]
Soundness

Definition: A first order sequent $A_1, \ldots, A_k \rightarrow B_1, \ldots, B_e$ is valid if and only if its associated formula $(A_1 \land \ldots \land A_k) \rightarrow (B_1 \lor \ldots \lor B_e)$ is valid.

Soundness Theorem for LK Every sequent provable in LK is valid.
Proof of Lemma

Go through each rule.

Example: \forall-right rule

Let $\Gamma = B_1 \ldots B_k$
$\Delta = C_1 \ldots C_{k'}$

$A_s: B_1 \land \ldots \land B_k \supset (\exists v \ldots \exists C_{k'} \land A(a))$

$A_{s'}: B_1 \land \ldots \land B_k \supset (\exists v \ldots \exists C_{k'} \land \forall x A(x))$

Note: a cannot occur in lower sequent and thus a can't occur in any B_i, C_i.

$\Gamma \rightarrow \Delta, A(x)$

$\Gamma \rightarrow \Delta, \forall x A(x)$
Theorem (LK Soundness)

Every sequent provable in LK is valid

Proof by induction on the number of sequents in proof.

Axiom $A \rightarrow A$ is valid

Induction step: use previous soundness lemma
Soundness (Proof): By induction on the number of sequents in proof

Example: \exists \text{Left}

Assume: \phi(b), \phi \Rightarrow \Delta \text{ has an LK proof and is valid}

Show: \exists x \phi(x), \phi \Rightarrow \Delta \text{ also valid}

By defn. \phi(b) \lor \overline{\phi}, \ldots \lor \overline{\phi} \lor \Delta \lor \ldots \lor \Delta_k \text{ is valid}

Let \mathcal{M} be any structure, \mathcal{G} any object assignment.

Show: \mathcal{M} \models \neg \exists x \phi(x) \lor \overline{\phi}, \ldots \lor \overline{\phi} \lor \Delta \lor \ldots \lor \Delta_k [6] \hspace{1cm} (\ast)

Case 1: \mathcal{M} \models \overline{\phi}, \ldots \lor \overline{\phi}, \ldots \lor \Delta \lor \ldots \lor \Delta_k [6]. \text{ Then (\ast) holds}

Case 2: Case 1 does not hold.
Soundness (Proof): By induction on the number of sequents in proof

Example: \(\exists \text{Left} \)

Assume: \(\forall (b), \Gamma \Rightarrow \Delta \) has an LK proof and is valid

Show: \(\exists x \forall (x), \rho \Rightarrow \Delta \) also valid

By defn \(\forall (b) \forall \pi, \nu \Rightarrow \forall \nu \Delta, \nu \Rightarrow \Delta_k \) is valid

Let \(M \) be any structure, \(\rho \) any object assignment.

Show: \(M \models \exists x \forall (x) \forall \pi, \nu \Rightarrow \forall \nu \Delta, \nu \Rightarrow \Delta_k \) \[6\] \(\ast \)

Case 1 \(M \models \forall \pi, \nu \Rightarrow \forall \nu \Delta, \nu \Rightarrow \Delta_k \) \[6\] \(\ast \)

Then \(\ast \) holds

Case 2 Case 1 does not hold.

Since \(b \) does not occur in \(\Gamma \) or \(\Delta \),

\(M \models \forall \pi, \nu \Rightarrow \forall \nu \Delta, \nu \Rightarrow \Delta_k \) \[6 \{ \ast \} \] for all \(m \in M \)

Since \(\forall (b), \Gamma \Rightarrow \Delta \) is valid, \(M \models \forall (b) \) \[6 \{ \ast \} \] \(\forall m \in M \)

Thus \(M \models \exists x \forall (x) \) \[6\], \(\ast \) thus \(\exists x \forall (x), \Gamma \Rightarrow \Delta \) is valid.