announcements

- HW1 out tomorrow
(Due oct II)

LAST CLASS

- Another proof system for propositional logic: PK soundness of PK
completeness of $P K$
- Derivational Soundness / Completeness of PK
- Propositional compactness Theorem ToDAy

Pages $9-17$ of Lecture Notes

TODAY

- Propositional Compactness theorem (FiNISH)
- First Order Logic

Language / SyNtax
Semantics: Models
(pages 18-27 of course notes)

Derivational Soundness + Completeness of PK
Definition Let Φ be a set of sequents, S a sequent A PK - Φ proof of S is a PK-proof of S from Φ and axioms of $P K$. (also written as $\phi \vdash S$)

Theorem. Let Φ be a set of (possibly infinite) sequents. Then $\Phi \vDash s$ iff S has a (finite) PK- Φ proof $\phi \Leftarrow s$ of $\phi \vdash 5$

Propositional Compactness
Theorem (Form 2, see Notes for 2 other equivalent forms)
Let Φ be a set of (possibly infinite) formulas $\Phi \vDash A$ iff A is a logical consequence of a finite subset of Φ

仑
Well assume this for now and prove it after Proof of 3 equivalent forms of compactness as homework

Proof (Derivational Soundresy/completeress)
By compactness, it suffices to prove the case where Φ is finite

- Let $\Phi=\left\{s_{1}, \ldots, s_{k}\right\}$, and suppose $\Gamma \rightarrow \Delta$ is a logical consequence of $\left\{S_{1}, \ldots, S_{k}\right\}$. Thus
(*) $\Gamma, A_{s_{1}}, \ldots, A_{s_{k}} \rightarrow \Delta$ is valid
- Thus by PK completeness, (*) has a PK proof

Derive $\Gamma \rightarrow \Delta$ from $(*)$ and $\rightarrow A_{s_{1}}, \ldots, A_{s_{k}}$

Proof (Propositional compactness)
ψ
Suppose $\Phi \neq A$. Then $\widetilde{\Phi, \Re A}$ is unsatisfiable
show: If ψ is UNSAT, then some finite subset of ψ is UNSAT (Form 1)

Pf sketch Assume the set of underlying atoms in ψ is countable: P_{1}, P_{2}, \ldots.

- Make decision free ${ }^{\top}$ that quines P_{1} at layer 1, then p_{2} at layer z_{1} etc.
- Each path in T corresponds to a complete truth assignment
- Prune T to $T^{\prime}:$

For every node v of T, remove subfree rooted below v if partial truth assignment from root to v falsifies some formula $f \in \Psi$. Label v by f

- Every path in T^{\prime} is finite (since Ψ unsat, so \forall truth ass to all vars, some $f \in \psi$ is falsified, and each $f \in \psi$ is finite)
- By König's Lemma, T^{\prime} is finite

Kionig's Lemma If T^{\prime} is a rooted binary tree, where every branch/path of T is finite, Then T is finite.

- Thus, the formulas $\Psi^{\prime} \leqslant \psi$ labelling the leaves of T^{\prime} form a finite subset of Ψ, and thus ψ^{\prime} is UNSAT + finite subset of ψ.

FIRST ORDER LOGIC
Underlying language \mathcal{L} specified by:
(1) $\forall n \in \mathbb{N}$ a set of n-arg function symbols (ie., $f, g, h,+, \cdot$) o-ary function symbols are called constants
(2) $\forall n \in \mathbb{N}$ a set of n-arg predicate symbols (i.e. $P, Q, R,<, \leq$)
Plus:

Example \mathcal{L}_{A} (language of anthmetic)
function relation
symbols symbols

0 constant (0-ary function symbol)
s unary function symbol
t, binary function symbols
= binary predicate sumba

Terms over \mathcal{Z}
(1) Every variable is a term
(2) If f is an n-arg function symbol, and $t_{1}, \ldots t_{n}$ terms, then $f t_{1} \ldots t_{n}$ is a term

Terms over \mathcal{Z}
(1) Every variable is a term
(2) If f is an n-arg function symbol, and $t_{1, \ldots} t_{n}$ terms, then $f t_{1} \ldots t_{n}$ is a term
$\frac{\text { Examples of terms }}{\text { ovary }}(0, s, f,+\underset{\text { unary }}{+}, j)$

$$
\begin{array}{ccc}
f \text { ossso, } & +x f y z, & +a b \text { sse } \\
\text { 个 } & + & \\
f(0, s s s 0) & x+f(y, z) & (a+b) \cdot s s o
\end{array}
$$

FIRST ORDER FORMULAS OVER \mathcal{Z}
(1) $p t_{1} . . t_{n}$ is an atomic f-formula, where P is an n-ary predicate in \mathcal{Z}, and $t_{1} . . t_{n}$ are terms over \mathcal{L}
(2) If A, B are \mathcal{L}-formulas, so are

$$
\sim A,(A \wedge B),(A \cup B), \forall x A, \exists \times A
$$

Example: Propositional formulas are FO Formulas
prop: (1) No function symbols
(2) 0 -ar predicate symbols P_{1}, P_{2}, (are propositional atoms)
plus $\wedge, v\urcorner,,),($

Since there are no function symbols, and all predicate symbols have o-arity, propositional formulas have No variables, terms, or \forall, \exists

Example: Fo Formulas over \mathcal{L}_{A}
(1) Existence of infinitely many primes
 $\forall x \quad \exists y \quad(y>x$ and y is prime)

Example: FO Formulas over \mathcal{Z}_{A}
(1) Existence of infinitely many primes want to say: $\forall x \exists y \quad(y>x$ and y is prime $)$ $y^{\text {us prime: }}: \forall z, z^{\prime} \quad\left(z, z^{\prime} \geq 2 \Rightarrow z \cdot z^{\prime} \neq y\right)$

Example: FO Formulas over \mathcal{Z}_{A}
(1) Existence of infinitely many primes want to say: $\forall x \exists y \quad(\overbrace{y>x}^{(* *)}$ and $\overbrace{y \text { is prime }}^{(*)}$ $y^{\text {is prime: }} \forall z, z^{\prime} \quad\left(z, z^{\prime} \geq 2 \Rightarrow z \cdot z^{\prime} \neq y\right)$
(*) $\left[\begin{array}{c}\forall z \forall z^{\prime}\left(\left(\neg(z=0) \wedge \neg(z=50) \wedge \neg\left(z^{\prime}=0\right) \wedge \neg\left(z^{\prime}=50\right)\right)\right. \\ \left.\rightarrow \neg\left(z \cdot z^{\prime}=y\right)\right)\end{array}\right.$
$A \rightarrow B$ abbrevaks $\neg A \cup B$

Example: FO Formulas over \mathcal{Z}_{A}
(1) Existence of infinitely many primes want to say: $\forall x \exists y \quad(\begin{array}{l}(* *) \\ y>x\end{array}$ and $\overbrace{y \text { is prime }}^{(*)})$ y is prime: $\forall z, z^{\prime} \quad\left(z, z^{\prime} \geq 2 \Rightarrow z \cdot z^{\prime} \neq y\right)$
(*) $\left[\begin{array}{c}\forall z \forall z^{\prime}\left(\left(\neg(z=0) \wedge \neg(z=50) \wedge \cap\left(z^{\prime}=0\right) \wedge \neg\left(z^{\prime}=50\right)\right)\right. \\ \left.\rightarrow \neg\left(z \cdot z^{\prime}=y\right)\right)\end{array}\right.$

$$
(* *)[y>x: \rightarrow(x=y) \wedge \exists w(x+w=y)
$$

Example: fo Formulas over \mathcal{Z}_{A}
(1) Existence of infinitely many primes want to express: $\forall x$ by $\frac{(y \text { is prime }}{A}$ and $\frac{y>x}{B}$)

$$
\begin{align*}
& A: \quad \forall z, z^{\prime}\left(z, y^{\prime} \geq 2 \Rightarrow z \cdot z^{\prime} \neq y\right) \\
& \left.\forall z \forall z^{\prime}\left(\neg(z=0) \wedge \neg(z=50) \wedge \neg\left(z^{\prime}=0\right) \wedge \neg\left(z^{\prime}=50\right)\right) \rightarrow \neg\left(z \cdot z^{\prime}=y\right)\right) \tag{*}\\
& B: \quad \neg(x=y) \wedge \exists w(x+w=y) \tag{**}
\end{align*}
$$

Whole thing: $\forall x \exists_{y}(*) \wedge(x-k)$

Example: Fo Formulas over \mathcal{L}_{A}
(2) Twin Prime Conjecture

There exists infinitely many pairs of numbers, $\left(x, x^{\prime}\right)$ such that $x^{\prime}=x+2$ and both x and x^{\prime} are prime

Example: Fo Formulas in \mathscr{L}_{A}
(3) Fermat's Last Theorem

$$
\forall n \geqslant 3 \quad \forall a, b_{1} c \quad\left(n>2 \rightarrow a^{n}+b^{n} \neq c^{n}\right)
$$

Example: FO
(3) Fermat's Las DIOPHANII. ALEXANDRNNM

$$
\forall n \geqslant 3 \quad \forall a, b, c
$$

$\operatorname{in} \mathscr{L}_{A}$

Ancient greek text, $3^{\text {rd }}$ century $A D$

Example: Fo Formulas in Fo
(3) Fermat's Last IT

$$
\forall n \geqslant 3
$$ OBSERVATIO DOMINI PETRINE

conjectured by Fermat 1637 in margin of his copy of Arithmetica

Example: Fo Formulas in \mathscr{L}_{A}
(3) Fermat's Last Theorem

Fermat's equation:
Finally proven by Andrew wiles

This equation has no solutions in integers for $n \geqslant 3$.

Example: FO Formulas in \mathcal{L}_{A}
(3) Fermat's Last Theorem (actually Andrea wiles theorem)

$$
\forall n \geqslant 3 \quad\left(\forall a, b, c \quad a^{n}+b^{n} \neq c^{n}\right)
$$

Problem: How to say a^{n} ?
(well see later how to do this!)

FREE/BOUND vARIABLES

- An occurrence of x in A is bound if x is in a subformula of A of the form $\forall \times B$, or $\exists \times B$ (otherwise x is free in A)
Example $\exists y(x=y+y)$

$$
P x \wedge \forall x(2(x+5 x=x))
$$

- A fromula/term is closed if it contains no free variables
- A closed formula is called a sentence

SEmANTICS of FO LOgiC
An \mathcal{L}-structure $9 M$ (or model) consists of:
(1) A nonempty set M called the universe (variables range over M)
(2) For early n-ar function symbol f in \mathcal{Z}, an associated function $f^{m}: M^{n} \rightarrow M$
(3) For each n-arr relation symbol P in \mathcal{Z}, an associated relation $p^{m} \leq M^{n}$

* Equality predicate $=$ is always true equality relation on M.

$$
\mathbb{M}=\mathbb{N} \quad \#=\mathbb{N}^{\mathbb{N}}=\{(i, i) \mid i \in \mathbb{N}\}
$$

Example

$$
\mathcal{L}_{A}=\left\{\overline{0}_{1},, \cdot, s ;=\right\}
$$

$$
z=2
$$

(1) IN: standard model of \mathcal{L}_{A}

$$
\begin{aligned}
& M=\mathbb{N} \\
& \overline{0}=0 \in \mathbb{N}
\end{aligned}
$$

t, •, s are usual plus, times, successor functions
Jumping ahead a bit: Evaluation of a formula in \mathbb{N}

$$
\begin{gathered}
\forall x \forall z \quad\left(\exists z^{\prime}\left(\neg\left(z^{\prime}=0\right) \wedge z+z^{\prime}=x\right) \rightarrow\right. \\
\left.\exists z^{\prime}\left(s z+z^{\prime \prime}=x\right)\right)
\end{gathered}
$$

Says: $\forall x y z$ if $x>z$ then x can be whiten as $z+1+$ (some other $z^{\prime \prime} \in \mathbb{N}$)

$$
\underbrace{\forall x} \underbrace{\exists x}()
$$

Example

$$
\mathcal{L}_{A}=\{0, s,+, \cdot j=\}
$$

(1) $M=N$,
$0=0 \in \mathbb{N}$
S: successor ie. $s(2)=3, \cdots$
t : plus. ie, $+(0, i)=i, f(2,3)=5$, etc
-: times
(2) $M=\{$ 回,, \} $O=$

$$
\begin{aligned}
& S(E)=0 \\
& S(0)=⿴ \\
& S(W)=\phi
\end{aligned}
$$

t	a	0	x
Δ	0	0	x
0	0	0	$\frac{x}{x}$
x	x	z	x

How to evaluate formulas that contain free vanables?

Defy An object assignment 6 for a model M ts a mapping from variables to M

Definition: Evaluation of terms/formulas over $M, 6$
Let $9 M$ be an \mathcal{L}-structure, 6 an object assignment for M

Evaluation of terms over om, 6
(a) $x^{m}[6]$ is $\sigma(x)$ for all variables x
(b) $\left(f t_{1} . . t_{n}\right)^{m n}[6]=f^{m}\left(t_{1}^{m}[6], \ldots, t_{n}^{m}[6]\right)$

Example 6: $x_{1} \rightarrow 5 \quad x_{2} \rightarrow 7$

$$
s\left(x_{1}+x_{2}\right)[6]=13
$$

Evaluation of formulas over $0 m, 6$
Let A be an \mathcal{L}-formula. $~ M \vDash A[6]$
(O n satisfies A under σ) iff
(a) $9 m \vDash P t_{1}, t_{n}[6]$ iff $\left\langle t_{1}^{m n}[6], \ldots, t_{n}^{m}[6]\right\rangle \in p^{m n}$
(6) $M \vDash(s=t)[6]$ iff $s^{m n}[6]=t^{m n}[6]$
(c) $M=\neg A[\sigma]$ iff Not $M \vDash A[6]$
(d) $m \neq(A \cup B)[6]$ iff $9 n \vDash A[6]$ or $M_{\neq B[6]}$
(e) $m \in(A \wedge B)[6]$ iff $\quad M \neq A[6]$ and $m \vDash B(6)$
(f) $m \vDash \forall x A[6]$ iff $\forall m \in M \quad m \in A[6(m / x)]$
(g) $m \vDash \exists x A[6]$ iff $\exists m \in M \quad M \in A\left[6\left(\frac{m}{x}\right)\right]$

For $a=0,1,2, \ldots$
Evaluate $\exists x(x+x=550+x)\left[\frac{a}{x}\right]$ For $b=0,1,-z \ldots$.

Evaluate $(x+x+550+x)\left[{ }^{h}{ }^{2}\right]$ [ak]

Example $\mathcal{L}=\{; R,=\}$

\[

\]

Then $\quad m \stackrel{y!?}{\stackrel{ }{\ell}} \forall x \exists y R(x, y)$
satisfiable

$$
g M \stackrel{N!}{\rightleftharpoons} \exists y \forall x R(x, y)
$$

F but $\exists y \forall x R(x, y)$ -is also sats/lable

IMPORTANT DEFINITIONS Let A be a foo formula on x.
(1) A is satisfiable iff there exists a model 91 and an object assignment 6 such that $M \models A[6]$
(2) A set of formulas Φ is satisfiable if $\exists M, 6$ such that $m \equiv \Phi[\sigma]\left[\begin{array}{c}M \in A[\sigma] \text { for } \\ \text { all } A \in \Phi\end{array}\right]$
(3) $\Phi \vDash A \quad(A$ is a logical consequence of $\Phi)$ of $\forall M \forall \forall$ if $M \vDash \Phi[6]$ then $m \in A[6]$ $\vDash A$ (A is valid) of $\forall O M, 6 \quad O M \vDash A[6]$
(4) $A \Leftrightarrow B \quad$ (A and B are logically equivalent) iff $\forall m \forall 6 \quad m \vDash A[6]$ iff $\quad M \vDash B[6]$
$A=B$ and $B=A$

Examples
(1) $\left(\forall x P_{x} \vee \forall x \cdot Q_{x}\right) \stackrel{?}{=} \forall x\left(P_{x} \vee Q_{x}\right)$
(2) $\forall x(A x \vee B x) \stackrel{?}{=} \forall x A x \vee \forall x B_{x}$

$$
\mathcal{L}=\{; P, Q, A, B\}
$$

Example
Earlier formula A :

$$
\begin{gathered}
\forall x \forall z\left(\exists z^{\prime}\left(\neg\left(z^{\prime}=0\right) \wedge z+z^{\prime}=x\right) \supset\right. \\
\left.\exists z^{\prime \prime}\left(s z+z^{\prime \prime}=x\right)\right)
\end{gathered}
$$

says for every x, z if $x>z$ then we can write x as $(z+1)+z^{\prime \prime}$ for some $z^{\prime \prime}$

- true when $\mathscr{M}=\underline{N}$ so A-is satisfiable
- false when $9 M=\left(\mu=\{0,1,2\} \begin{array}{ll}50=1 & 0+2 \geq 2 \\ s 102 & \text { all others }\end{array}\right)$

$$
x=2 \quad z=0
$$

$52=0$
all others $x+y=0$

Example

$$
\begin{aligned}
& M=\{\overline{0,1,2\}} \\
& f(x)=0 \quad \forall x \in\{0,1,2\} \\
& \forall x \forall y f(x)=f(y)=0 \\
& 6(x)=1 \\
& 6(y)=2 \\
& \text { But }
\end{aligned}
$$

Example

$$
\forall x \forall y\left(f_{x}=f_{y}\right) \stackrel{?}{\stackrel{?}{N_{0}}} x=y
$$

Let $M=\{0,1\}$
$o n:$

$$
\begin{aligned}
& f(0)=0 \\
& \frac{f}{f}(1)=0
\end{aligned}
$$

then $\quad \Delta n \vDash \forall x \forall y\left(f_{x}=f_{y}\right)$ but $m x x=y$ (since $0 \neq 1$)

Substitution
Let s, t be \mathcal{I}-terms.
$t(s / x)$: substitute x everyunere by s
$A(s / x)$: substitute all free occurrences of x in A by s

For readability, we mill unite

$$
t=+550 x \text { as } 350+x
$$

Substitution
Let s, t be \mathcal{Z}-terms.
$t(s / x)$: substitute x everyunere by s
$A(s / x)$: substitute all free occurrences of x in A by s
Lemma $(t(s / x))^{m n}[6]=t^{o n}\left[6\left(\frac{s n_{[\sigma]}}{x}\right)\right]$
substitute x for s
to get t^{\prime}
obtain New object assignment then evaluate t' under $m, 6$ 6^{\prime} where $\sigma^{\prime}(x)=5$ m Then evaluate t under $m, 6^{\prime}$

Substitution Cont'd
Need to be more careful when making substitutions into formulas
Example: $A: \forall y=(x=y+y)$

$$
A\left(\frac{x+y}{x}\right): \forall y \cap(x+y=y+y)
$$

Defn term t is freely substitutable for x in A - iff there is No subformula in A of the form $\forall y B$ or $\exists y B$ where y occurs in t

Substitution Theorem
If t is freely substitutable for x in A then $\forall M \forall \forall$

$$
m \equiv A(t / x)[6] \text { iff } \quad m \equiv A\left[6\left(t^{m n} \frac{[6]}{x}\right)\right]
$$

Easy way to avoid this problem (of making a "bad" substitution):

2 types of variables
free variables a, b, c, bound vainables x, y, z, \ldots

Proper formula : every free variable occurrence is of type tree, t every bound variable occurrence of type bound
Proper term: No variables of bype bound

FIRST ORDER SEQUENT CALCULUS LE
Lines are again sequent

$$
\left.\begin{array}{l}
\text { are again sequents } \\
A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}
\end{array}\right\} s
$$

where each $A_{i}, B_{\text {, }}$ is a proper \mathcal{L}-formula

$$
A_{s}: A_{1} \wedge A_{2} \wedge \ldots \wedge A_{k} \supset B_{1} \vee \ldots \vee B_{l}
$$

FIRST ORDER SEQUENT CALCULUS LE
Lines are again sequent

$$
A_{1}, \ldots, A_{k} \rightarrow B_{1}, . ., B_{l}
$$

where each $A_{i}, B_{\text {, }}$ is a proper \mathcal{L}-formula
RULES
OLD RULES OF PK
plus new rules for \forall, \exists
like a large AND

New Logical Rules for \forall, \exists
\forall-left $\quad \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \quad \forall$-Right $\quad \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall \times A(x)}$

Heft $\quad \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \quad \exists$-right $\quad \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists \times A(x)}$

* Att are proper
* b is a free variable Not appearing in cower sequent of rule

Example of an LK proof

SOUNDNESS
Detn A first order sequent $A_{1, \ldots}, A_{k} \rightarrow B_{1, \ldots}, B_{l}$ is valid if and only if its associated formula $\left(A_{1} \wedge \ldots \wedge A_{K}\right) \supset\left(B_{1} \vee \ldots \vee B_{l}\right)$ is valid.

Soundness Theorem for LK Every sequent provable in LK is paled

Proof of Lemma
go through each rule Example: \forall-right rule $\frac{\Gamma \rightarrow \Delta, A((a)}{\Gamma \rightarrow \Delta, \forall x A(x)} \longleftarrow s^{\prime}$

$$
\text { lat } \begin{aligned}
\Gamma & =B_{1} \ldots B_{l} \\
\Delta & =C_{1} \ldots C_{l^{\prime}}
\end{aligned}
$$

Note: a in cannot occur serum lower sequent
thus

$$
\begin{align*}
& A_{s}: B_{1} \wedge \ldots \wedge B_{l} \supset C_{1} \vee \ldots \vee C_{e^{\prime}} \vee A(a) \tag{tabular}\\
& A_{s^{\prime}}: B_{1} \wedge \ldots \wedge B_{l} \supset C_{1} \vee \ldots \vee C_{e^{\prime}} \vee \forall A(x)
\end{align*}
$$

Theorem (LK soundness)
Every sequent provable in $L K$ is valid

Pf by induction on the number of sequents in proof.
Axiom $A \rightarrow A$ is valid
Induction step: use previous soundness lemma

Soundness (Proof): By induction on the number of sequents in proof

Example: ヨ Left
Assume: $A(b), \Gamma \rightarrow \Delta$ has an LK proof and is valid show: $\exists x A(x), r \rightarrow \Delta$ also valid
By def $\overline{A(b)} \vee \bar{r}_{1} v \ldots v \bar{\Gamma}_{k} \vee \Delta_{1} v \ldots \Delta_{k}$ is valid Let on be any structure, 6 any object assignment,
Show: \quad mn $\neq \neg \exists x A(x) \vee \bar{\Gamma}_{1} \vee \ldots \vee \bar{\Gamma}_{k} \vee \Delta_{4} \vee \ldots \vee \Delta_{k}[6] \quad(*)$
case 1 an $\Leftarrow \bar{\Gamma}_{1} \vee \ldots \nu \bar{\Gamma}_{i c} \vee \Delta_{1} \cdots \ldots \Delta_{k}[6]$. Then (t) holds
case 2 Case 1 does not hold.

Soundness (Proof): By induction on the number of sequents in proof

Example: \exists Left
Assume: $A(b), \Gamma \rightarrow \Delta$ has an $L K$ proof and is valid show: $\exists x A(x), n \rightarrow \Delta$ also valid
By def $\overline{A(b)} v \bar{r}_{1} v \ldots v \bar{\Gamma}_{k} \vee \Delta, v \ldots \sim \Delta_{k}$ is valued let $9 n$ be any structure, 6 any object assignment.
Show: $9 n \neq \neg \exists x \beta(x) \vee \bar{\Gamma}_{1} v \ldots \bar{\Gamma}_{k} \vee \Delta v \ldots \vee \Delta_{k}[6](*)$
case 1 $\quad 0 n \vDash \bar{\Gamma}_{1} v \ldots \nu \bar{\Gamma}_{1 c} \sim \Delta_{1} \cdots \cdots \Delta_{k}[6]$. Then (H) holds
case 2 Case 1 does not hold.
Since b does not occur in Γ or Δ,
$9 m * \bar{\Gamma}_{1} \vee \ldots \sim \bar{\Gamma}_{k} \vee \Delta_{1} \vee \ldots \Delta_{k}\left[6\left(\frac{m}{b}\right)\right]$ for $a(l m \in M$
Since $A(b), r \rightarrow \Delta$ is valid, $m \vDash \overline{A(b)}\left[6\left[\frac{m}{6}\right]\right] \forall m \in M$
Thus $M \vDash \neg \exists x A(x)$ [6], thus $\exists x A(x), n \rightarrow \Delta$ is valid.

