Last class:

1. Intro 2. Propositional logic Syntax / semantics Resolution: proof system for propositional logic - soundness - completeness

Pages 1-9 of Lecture Notes, plus supplementary notes on Resolution

Announcements

· Office hours start Next week

Last Class (Recap)

- Course syllabus, overview/intro
- Propositional Logic
- . Resolution Proof System

Sound ness Completeness

Welcome to CS 4995 : Computability and Logic

- Professor : Toniann Pitassi (Toni)
- TA : Yasaman Mahdaviyeh

Webpage :

Email: toni@cs.columbia.edu, tonipitassi@gmail.com

Welcome to CS 4995 : Computability and Logic Professor : Toniann Pitassi (Toni) : Yasaman Mahdaviyeh TA Webpage : www. cs. columbia. edu/~toni/courses/Logic2022/4995. html Email: toni@cs.columbia.edu, tonipitassi@gmail.com Office hours: Mon 5-6 (Toni, via zoom) Tues 2:45-345 (Yasaman St floor Mudd) * Email ahead of time if you plan to attend *

Marking Scheme

2 assignments 20^{do} each 2 tests (in class) 25^{do} each class participation 10^{do}

Dates

Homework 1	Oct 11 11:59 pm	
Test 1	Oct 19 in class	
Homework 2	Nov 29 11:59 pm	
Test 2	Dec 7 in class	

PROPOSITIONAL LOGIC

Inductive Definition of a Propositional Formula

1. Atoms/ propositional variables: P1, P2, ... X, Y, Z, ... are formulas

Example: $((x \vee y) \wedge (\neg x)) \vee (Z \vee \gamma y)$

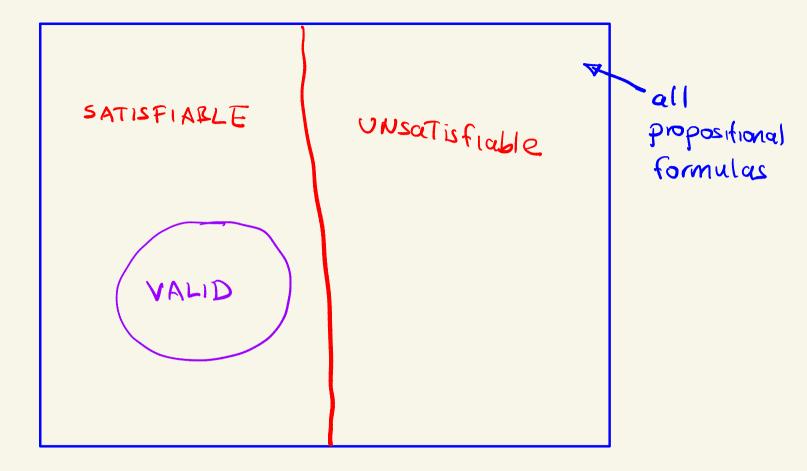
Semantics
A truth assignment
$$T: \{atoms\} \rightarrow T, F$$

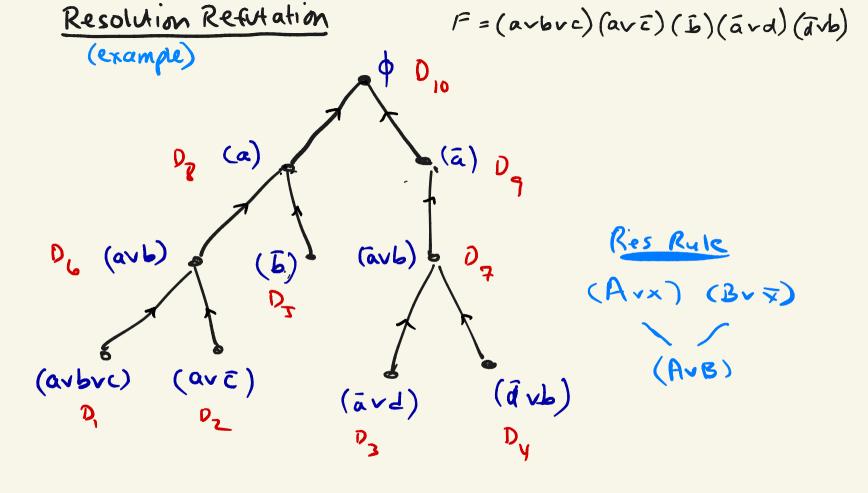
Extending T to every formula:
(1) $(\neg A)^T = T$ iff $A^T = F$
(2) $(A \land B)^T = T$ iff $A^T = T \land B^T = T$
(3) $(A \lor B)^T = T$ iff either $A^T = T$ or $B^T = T$

Definitions.

 γ satisfies A lift $A^{\gamma} = T$

A is satisfiable iff there exists some truth assignment I such that A"=T A is Unsatisfiable iff for every truth assignment γ $A^{\gamma} = F$ A is a tautology (or vailed) iff for every truth assignment T, A^T=T



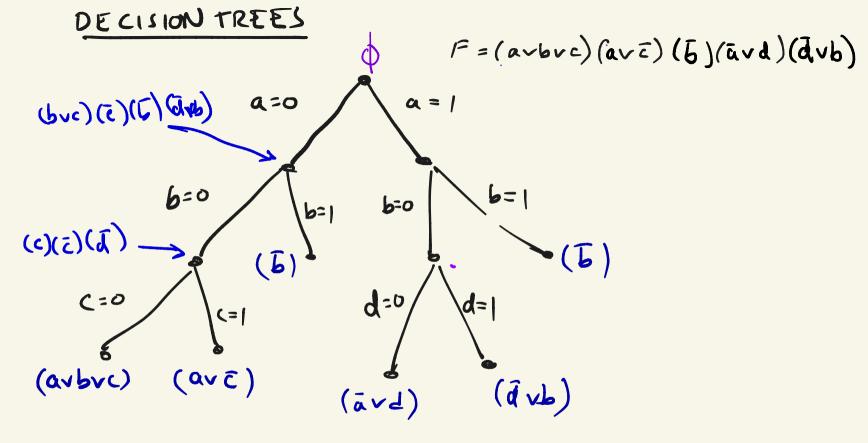


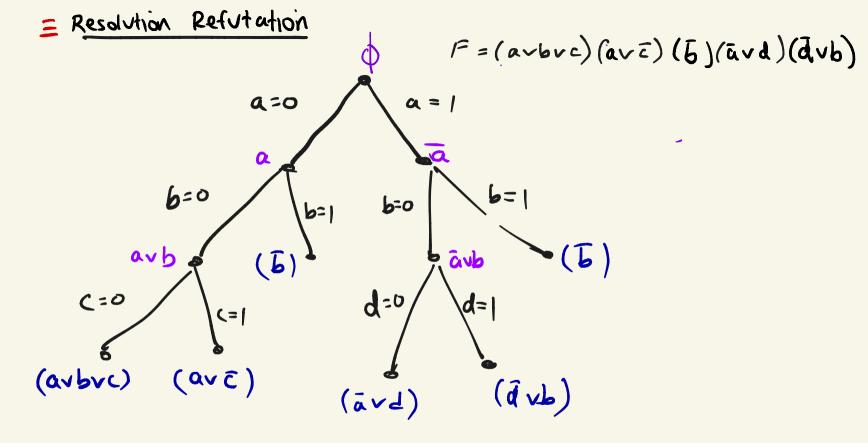
Resolution soundness

RESOLUTION COMPLETENESS THM

Every unsatisfiable CNF formula F has a ResolutION Refutation

Proof idea We describe a canonical procedure for obtaining a RES relateition for F The procedure exhaustily tries all truth ass's - via a decision free then we show that any such decision the can be newed as a RES regutation





Today

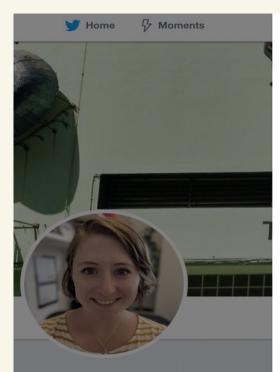
· Propositional compactness Theorem

Pages 9-17 of Lecture Notes

THE (PROPOSITIONAL) SEQUENT CALCULUS

- Rules are very Natural 2 for each boolean connective
- Cut Rule (Modus Ponens) Not needed for completeness. (This formulation requires meta-symbol "->") This greatly simplifies/clarifies completeness proofs for propositional and first order logic

Sequent Calculus goes viral on Twitter



billions of packets

@justinesherry

Computer person. I like middleboxes, systems, and especially Internets. Assistant Prof @ Carnegie Mellon SCS. Dr. Sherry, sha/har sharry@cs.cmu.adu

billions of packets @justinesherry

Follow)

Please help settle a marital dispute between me and @rubengmartins. If you have a CS degree, did you learn sequent calculus in college?

14% Yes

26

 \bigcirc

11

15% No, but I know what it is

60% What is sequent calculus?

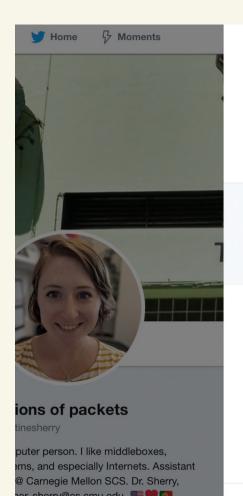
11% I don't have a CS degree

863 votes · Final results

5:02 PM - 7 Sep 2018 from Moon, PA

Also tell me where you went to school in the comments if you are so inclined

4





Sequent Calculus Standard Shirt \$18.95 15% Off with code GANGSALLHERE

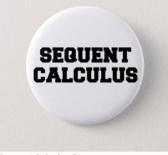
Sequent Calculus Fitted Shirt \$17.95 15% Off with code GANGSALLHERE

Sequent Calculus Mug \$16.95 15% Off with code GANGSALLHERE SEGUENT CALCULUS

Sequent Calculus Tote Bag \$9.95 15% Off with code GANGSALLHERE

German Fitted Sequent Calculus Shirt

German Sequent Calculus Shirt



Sequent Calculus Pin

00.00

gentzen's PK proof system

Lines in a PK proof are sequents

$$A_{1,...,}A_{k} \rightarrow B_{1,...,}B_{r}$$

antecedent succedent

gentzen's PK proof system

Lines in a PK proof are sequents

$$A_{1,...,}A_{k} \longrightarrow B_{1,...,}B_{r}$$

Semantics:

$$A_1 \land A_2 \land \dots \land A_k \supseteq B_1 \lor \dots \lor B_r$$

The conjunction of the A_2 's implies
the disjunction of the B_1 's

gentzen's PK proof system

Lines in a PK proof are sequents

$$A_{1,...,}A_{k} \rightarrow B_{1,...,}B_{r} \stackrel{d}{=} 5$$

Semantics:

$$A_1 \land A_2 \land \dots \land A_k \supseteq B_1 \lor \dots \lor B_r \supseteq A_s$$

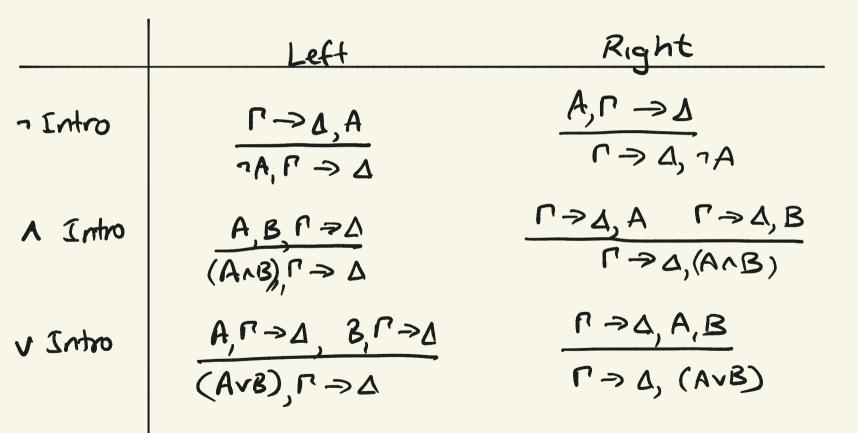
The conjunction of the A's implies
the disjunction of the B's

(sequent S = $A_1, \dots, A_k \rightarrow B_1, \dots, B_j$ 4: ~ (A, A, A,) v (B, v. ~ B;) (associated propositional formula

STRUCTURAL RULES

	Left	Right
Weakening	$\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta}$	$\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, A}$
Exchange	$\frac{\Gamma_{,,A,B,\Gamma_{2}} \rightarrow \Delta}{\Gamma_{,,B,A,\Gamma_{2}} \rightarrow \Delta}$	$\frac{\Gamma \rightarrow \Delta_1, A, B, \Delta_2}{\Gamma \rightarrow \Delta_1, B, A, \Delta_2}$
Contraction	$\frac{\Gamma, A, A \rightarrow \Delta}{\Gamma, A \rightarrow \Delta}$	$\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$

LOGICAL RULES



So we can think of $A_{i}, \dots, A_{k} \rightarrow B_{i}, \dots B_{i}$

as
$$\rightarrow \neg A_1 \vee \neg A_2 \vee \neg A_3 \vee \cdot \vee \neg A_k \vee B_1 \vee \cdot \vee B_1$$



Axion A->A = TAVA law perchad mode

Example: A PK proof of a formula A is
a PK proof of
$$\rightarrow A$$

P $\rightarrow P$
 $P \rightarrow P$
 $P \rightarrow Q$
 $Q \rightarrow P Q \rightarrow P Q$
 $Q \rightarrow P Q Q$
 $Q \rightarrow P Q$
 $Q \rightarrow P Q$
 $Q \rightarrow P Q Q Q$

PK SOUNDNESS : Every sequent provable in PK is VALID

As in the propositional case, we first verify the soundness of all rules + then prove PK soundness by induction

Lemma (soundness of Rules) For every rule of PK, if all top sequents are valid, then the bottom sequent-is valid also the axiom is valid PK soundness If S has a PK prob, men As is valid

$$\begin{array}{ccc} \underline{Example} & \underline{\Gamma \rightarrow \Delta, A} & \underline{\Gamma \rightarrow 0, B} & \underline{AMD-st nk} \\ Let & \Gamma = C_{1,2}, C_{k} & & \overline{\Gamma \rightarrow \Delta, (A \land B)} \\ & \Delta : & D_{1,2}, D_{\mathbf{0}} & & & \overline{\Gamma \rightarrow \Delta, (A \land B)} \end{array}$$

Show:
Let
$$\tau$$
 be any fruth ass to atoms in $\Gamma, 0, (A \vee B)$
If T satisfies $\neg(C_1 \land \ldots \land C_k) \lor (D_1 \lor . \lor D_0) \lor A$] formula
ond τ satisfies $\neg(C_1 \land \ldots \land C_k) \lor (D_1 \lor . \lor D_0) \lor A$] formula
 $T \land T \land atisfies \neg(C_1 \land \ldots \land C_k) \lor (D_1 \lor . \lor D_0) \lor B$] formula
for $T \mathrel{\sim} 0, B$
Then T satisfies $\neg(C_1 \land \ldots \land C_k) \lor (D_1 \lor . \lor D_0) \lor (A \wedge B)$

PK COMPLETENESS : Every valid propositionial sequent has a PK proof

PK COMPLETENESS : Every valid propositionial sequent has a PK proof

Main idea: again we will give an algorithm that will produce a PK proof for any valid sequent Algorithm: Write sequent at bottom (of proof) D Repeatedly: pick an outermost connective in a formula in a reaf sequent of current proof + apply the rule for that convective (in reverse) (2) continue until all leaf sequents consist of just atoms

Show: If we run algorithm on a valid sequent $\Gamma \rightarrow \Delta$, then at end, all leaf sequents must contain an atom occurring both on left + right — ie A,B,C \rightarrow A,D

Then can finish proof by applying weakening (in reverse) (e. $A \rightarrow A$ $A, B, C \rightarrow A, D$ PK completeness (cont'd)

Key Property is the INVERSION PRINCIPLE: each PK rule except weakening has the property that V truth assignments \mathcal{P}_{if} if \mathcal{T} satisfies bottom sequent, then \mathcal{T} satisfies both upper sequents

t called inversion since it is the reverse direction of what we needed to prove soundness: IT if Tratisfies both upper sequents, then T satisfies Cover sequent

PK completeness

• If 1-70 is valid, by Inversion Property, all leaf sequents generated in step (1) of Algorithm are VALID and have one less connective than sequent below o Thus eventually step (1) halts, where each leaf sequent involves only atoms and each leaf sequent is valid : each leaf sequent looks like D,A ← J,A ie has an atom A on both Left + Rt sides

PK completeness

Claim Let T be the output of PK algorithm on input Γ⇒Δ. If Γ⇒Δ is valid then every leaf sequent of T contains only atomic formulas (propositional variables) on Left/right of ">" and furthermore, there exists some atomic formula occurring on both the left + right

PE suppose for soke of contradiction that some leaf sequent of TT is: X1,...,XK→Y1,...,Ye where £X,...,YK}∩ £Y,...Ye} = \$\$. Then the truth assignment T' that sets X=X====Xk=1, Y=Y==Ye=0 falsifies the sequent which contradicts back that all leaf sequents of TT are valid (since T→A assumed to be valid)

Derivational Soundness & Completeness & PK

Theorem. Let
$$\overline{\Phi}$$
 be a set of (possibly infinite)
sequents. Then $\overline{\Phi} \models s$ iff
s has a (finite) $PK-\overline{\Phi}$ proof
 $D \models s$ (ff $\overline{\Phi} \models s$

•

Propositional Compactness

Q We'll assume this for Now and prove it after Proof of 3 equivalent forms of compactness as homework Proof (Derivational Soundness/ completeness)

Thus by PK completeness, (*) has a PK proof Derive $\Gamma = A$ from (*) and $= A_{s_1}$, ..., A_{s_k}

Derive
$$\Gamma \rightarrow \Delta$$
 from $\{ \neg A_{s_{i_1}} \rightarrow A_{s_{i_2}} \rightarrow A_{s_{i_3}}, (\mathbf{k}) \}$
PK proof q_i
 $\Gamma, A_{s_1}, A_{s_2}, A_{s_3} \rightarrow \Delta$
 $\Gamma, A_{s_1}, A_{s_2}, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_1}$
 $\Gamma, A_{s_2}, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma, A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma, A_{s_3} \rightarrow \Delta$ (cut) $\neg A_{s_3} \rightarrow \Delta, A_{s_2}$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$
 $\Gamma \rightarrow A$ (cut) $\Gamma \rightarrow A_{s_3}, \Delta$ (weatering)
 $\Gamma \rightarrow A_{s_3}, \Delta$ (cut) $\Gamma \rightarrow A_{s_3}, \Delta$ (weatering)

Proof (Propositional compactness) Suppose $\overline{\Phi} \neq A$. Then $\overline{\Phi}$, \overline{A} is unsatisfiable show: If Y's UNSAT, then some finite subset of Y's UNSAT (Form 1) Pf sketch Assume the set of underlying atoms in V is countable: P1, P2, • Make decision tree That queries p, at layer 1, then P2 at layer z, etc.

 Each path in T corresponds to a complete touth assignment

For every node v of T, remove subtree rooted below v if partial truth assignment from root to v falsifies some formula fe P. Label v by f

• Every path in T' is finite (since ψ unsat, so \forall truth ass to all vars, some $f \in \psi$ is falsified, and each $f \in \psi$ is finite)

- By König's Lemma, T' is finite

König's Lemma If T'is a rooted
binary tree, where every branch/path
of T is finite, Then T'is finite.
Thus, the formulas
$$\Psi' \in \Psi$$
 labelling the leaves
of T' form a finite subset of Ψ ,
and thus Ψ' is UNSAT + finite
subset of Ψ .