

HWZ out last week

Proof of Main Lemma
$$(R_{f} = graph H)$$
 is an re. relation)
Definition β -function
 $\beta(c, d, i) = rm(c, d(i+i)+1)$ where $rm(x, y) = x \mod y$
Lemma O. $\forall n, r_{0}, r_{1}, ..., r_{n} \xrightarrow{\exists c_{1}} d$ such that $\forall i \leq n \beta(c, d, i) = r_{i}$
the pair (c, d) represents the sequence $G(r_{1}, ..., r_{n} using f)$
entire tableaux
of TM configuration

1st Incompleteness Theorem: TA is Not axiomatizable That is, any sound, axiomatizable theory is incomplece.

-> PA is axiomatizable. So assuming PA us sound, it is incomplete (so there are sentences A such that weither A or 7A is provable from axioms of PA.)

$$K^{c} = \frac{f(x)(xx_{x}) \text{ doesn't hall}}{F(x)} K$$

r sound and axiomatizable ⇒ ∃A, 7A & r

Tarski Theorem

Define the predicate Truth = N Truth = { m | m encodes a sentence <m} ETA } Then Truth is Not arithmetical. By 30,-Theorem (every ne. set/Language is arithmetical) this implies that Truth is Not ne.

PF of Tarski's 1hm

Let d(m) = sub(m,m)

$$\begin{cases}
d(n) = 0 \text{ if m Not a legal encoding.} \\
ow say m encodes A(x). \\
\text{ then d(m) = m' where m' encodes A(s_m)}
\end{cases}$$
Cleanly sub, d are both computable
so by $\exists A_o \text{-theorem graph(s,b), graph(d)} \text{ are orithmetical}$

Proof of Tarski's Thm
Suppose that Truth is arithmetical.
Then define
$$R(m) = \pi \operatorname{Truth} (d(m))$$

Since d , Truth both arithmetical, so is R
Let $R(m)$ represent $R(m)$, and let e be the encoding of $R(m)$
Then $d(e) = \operatorname{encodim} of R(s_e)$ encodes
"T am fulse"
Then
 $R(s_e) \in TA \iff \pi \operatorname{Truth}(d(e_i))$ since \tilde{R} represents R
 $\implies \pi R(s_e) \in TA$ by defin q truth
 $(frouth(d(e) soys R(s_e) \in TA))$

this is a contradiction since A and 7 A cannot both be in TA #

R(x) represented by a formula A(x) if: VNEIN R(n) (=) TA = A(Sn) ~ term corresponds to the number ろ

PEANO ARITHMETIC

P1.
$$\forall x (sx \neq 0)$$

P2. $\forall x \forall y (sx = sy = x = y)$
P3. $\forall x (x + 0 = x)$
P4. $\forall x \forall y (x + sy = s (x + y))$
P5. $\forall x (x \cdot 0 = 0)$
P6. $\forall x \forall y (x \cdot sy = (x \cdot y) + x)$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx))) = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx))) = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx)))] = \forall x A(x)]$
IND (A(x)): $\forall y_{1} = \forall y_{k} [(A(0) \land \forall x (A(x) = A(sx)))] = \forall x A(x)]$

1. M is recursive

Robinson's Anthmetic RA

Axioms {P1, ..., P6} & PA plus P7, P8, P9
P7: (Vx x <0 = x=0)
P8: Vx Vy (x < sy > (x < y v x=sy))
P9: Vx Vy (x < y v y < x)
where
$$t_i = t_2$$
 abbreviates $\exists z(t_i + z = t_2)$
FACTS @ RA = PA
@ PA finitely axiomatizable
③ Over extended language $d_{A,\leq}$, RA axioms are Usentences

SOUND, CONSISTENT THEORIES OF ARITHMETIC

Stronger Version of
$$\exists \Delta_o$$
 $\forall hm$
Recall
R(x) is represented by $A(x)$ if
 $\forall n \in \mathbb{N}$ $R(n) \in \mathbb{T} A \models A(S_n)$

Corollaries of RA Representation Theorem

$$K \stackrel{d}{=} \sum_{x} (x \times i(x) \text{ halls})$$

 $f \stackrel{d}{=} \sum_{x} (x \times i(x) \text{ halls})$
 $F \stackrel{$

RA Representation Theorem Every r.e. relation is represented in RA by an Ed, formula

Proof idea

Main Lemma: every do-sentence in TA is provable in RA Assuming Main Lemma, Let R(x) be on r.e. relation, By Exists - Detta Theorem, R(x) is expressived (in TA) by some Elg-formula A(x) so $\forall \vec{a} \in \mathbb{N}^{k}$ $R(\vec{a}) \implies \exists y \land (S_{\vec{a}}, \vec{y}) \in T_{A}$. By soundness of RA + since every of sentence of TA is provable in RA $R(a) \iff RA \vdash \exists \gamma A(S_a, \gamma)$ = Jy RA H ACS, S,) So Zy A(x,y) represents R(x) in RA

PROOF (SKETCH) OF Main Lemma Main Lemma: every do-sentence in TA is provable in RA <u>Proof</u> By induction on number of logical symbols in A For convenience easier to work in RA_E : = New relation symbol, Axioms PI-P9 Plus New axiom PO PO: VXVY (X = Y <> Z (XH Z = Y))

$$\Delta_0$$
 sentence:
 $\exists x \in (sso + ssso) \cdot ssssso] \forall y \in (x + x) ssso A(x,y)$
 zs

PROOF (SKETCH) OF Main Lemma Main Lemma: every do-sentence in TA is provable in RA Proof By induction on number of logical symbols in A For convenience easier to work in RAz : = New relation symbol, Axioms PI-P9 Plus New axiom PO PO: Vx dy (x = y 4) 3= (x+ 2 = y)) Base Case A: t=u, r(t=u), t=u, r(t=u) Lemma Al: RA + Sm + Sn = Smin + Sn · Sn = Smin Lemma A: t closed (No vanables) and TAH t=s, then RA + t=s, Lemma B: Um=n RAe+ Sn = Sm Lemma C: RAL- Vx (x = s, = (x=0 v X=s, v X=s_v. v X=s_n))

t: sso + 55... 0 N-2

PROOF (SKETCH) OF Main Lemma Main Lemma: every do-sentence in TA is provable in RA Proof By induction on number of logical symbols in A For convenience easier to work in RAz : = New relation symbol, Axions PI-P9 Plus New axion PO PO: Vx Vy (x = y <>) == (x+ = = y)) Induction step Apply ind. hyp. $() A = A_1 \vee A_2 \quad A_1 \wedge A_2$ $A = \forall x \in t B(x)$ + t closed so by Lemma A RA= + t= Sn for some Fixed · Show RA_ F VX= n B(x) By Lemma C RASHX=N>(X=0 VX=S, V. VX=S,) By induction RAS - B(c) for all C=n Put together to derive RA - Wish B(x)

PROOF (SKETCH) OF Main Lemma Main Lemma: every do-sentence in TA is provable in RA Proof By induction on number of logical symbols in A For convenience easier to work in RAz : = New relation symbol, Axions PI-P9 Plus New axion PO PO: VXVY (X=Y 4) 3= (X+2=4)) Induction step () A = A, v Az, A, AZ, Apply ind. hyp. A = Vx = t B(x) + t closed so by Lemma A RA= + t= Sn for some Find · Show RA E F VX = n B(x) By Lemma C RASHX=N>(x=0vx=s, V.vx=s,) By induction RASHB(c) for all C=n Put together to derive TA_F- Wien B(x) (3) A = In=t B(x) proof similar to (2)

Consequences of MAIN LEMMA

Stronger Version of Incompleteness Thr
Recall
R(x) is represented by an EA, formula
$$A(\overline{x})$$
 if
 $\forall \overline{a} \in \mathbb{N}$ $R(\overline{a}) \in \mathbb{N} \neq A(S_{\overline{a}})$
Stronger version:

$$\vec{R}(\vec{x})$$
 is represented in RA by $A(\vec{x})$ if
 $\forall \vec{a} \in N \quad R(\vec{a}) \iff RA \models A(S_{\vec{a}})$

RA Representation Theorem Every r.e. relation is represented in RA by an Ed, formula

v