Announcements

HW2 out by tonight
HW1, Test 1 will be returned Next week

Review of Definitions
$\mathcal{L}_{A}=\left\{0_{1} s_{,}+, \cdots ;=\right\} \quad$ Language of arithmetic $\Phi_{0}=$ all \mathcal{L}_{A}-sentences
$T A=\left\{A \in \Phi_{0} \mid \mathbb{N} \vDash A\right\}$ True Anthmetic
A theory \sum is a set of sentences (over \mathcal{Z}_{A}) closed under logical consequence

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ
Σ is consistent iff $\Phi_{0} \neq \Sigma$ (iff $\forall A \in \Phi_{0}$, either A or $1 A$ Not in Σ)
Σ is complete iff Σ is consistent and $\forall A$ either A or $7 A$ is in Σ
Σ is sound iff $\Sigma \leq T A$
Let m be a modu/structure over \mathcal{L}_{A}

$$
T h(m)=\left\{A \in \Phi_{0} \mid \quad m \in A\right\}
$$

Th (an) is complete (for all structures $O M$)
Note $T A=T h(\mathbb{N})$ is complete, consistent, a sound
$V A L I D=\left\{A \in \Phi_{0} \mid \in A\right\} ;$ smallest theory

Let Σ be a theory
Σ is axiomafizable if there exists a set $\Gamma \leq \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem \sum is axiomatizable iff Σ is re. (P. 76 of Notes)

Incompleteness Theorem m

Incompleteness Theorem of TA: TA is not axiomatizable In other words, any sound theory \sum (sound: $\Sigma \subseteq T A$) that is re. is a strict subset of TA sentences in TA

Representing a Relation by a Formula (in $T A$)
Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc. For $a \in N$, Let \tilde{a} be the term s_{a} corresponding to a.
Let $R(x)$ be a relation $R \subseteq \mathbb{N}^{n}$
Let $A(x)$ be an \mathscr{L}_{A} formula, with free variable x $A(x)$ represents R iff $\forall a \in \mathbb{N} \quad R(a)$ is true $\Leftrightarrow A(\tilde{a}) \in T A$
$\begin{gathered}\text { Example } R \leq \mathbb{N} \quad R=\{a \in \mathbb{N} \mid a \text { is even }\} \\ A(x)=(y)(y+y=x)\end{gathered} \quad \exists y \leqslant x(y+y=x)$

$$
\begin{aligned}
& A(x)=\equiv y)(y+y=x) \\
& R(3)=\text { false } \\
& R(4)=\text { and } N \in A(\text { ass }) \text {, and } \mathbb{N}=A((5550)=\exists y(y+y=5550)
\end{aligned}
$$

Representing a Relation by a Formula (in TA)
Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc.
For $a \in \mathbb{N}$, Let \tilde{a} be the term s_{a} corresponding to a.
Let $R(x)$ be a relation $R \subseteq \mathbb{N}^{n}$
Let $A(x)$ be an \mathcal{L}_{A} formula, with free variable x $A(x)$ represents R iff $\forall a \in \mathbb{N} \quad R(a)$ is true $\Leftrightarrow A(\tilde{a}) \in T A$

Defn Arelation R is arithmetical iff there is a formula $A \in \mathcal{L}_{A}$ that represents R
(FIRST) INCOMPLETENESS THEOREM

ExISTS-DELTA THEOREM (pp 68-71):
Every re.. predicate/language is arithmetical and therefore the complement of any re. Language 'is arithmetical.

Example,
Sis re. so by $\& K(x)$ ir represented $k y$ some some $A(x)$.
$\therefore K^{c}$ is represented by $7 A$
(FIRST) INCOMPLETENESS THEOREM
EXISTS-DELTA THEOREM (pp 68-71):
Every re.. predicate/language is arithmetical, and therefore the complement of an re. Language is arithmetical

Proof of Incompleteness from Exists-Dcita Theorem

- If $T A$ is axiomattzable, then TA is re.
- We will show that this implies that K^{c} is re. (to get a contradiction)
- Assume TA is re and let M be a TM st. $\mathcal{Z}(M)=$ TA
- Since K^{c} is complement of an re. Language, by Exists-Delta The there is a formula $F(x)$ such that $\forall a \in \mathbb{N}$:
$F(\tilde{a}) \in T A$ iff $a \in K^{c}$, where $\tilde{a}_{\text {is }}$ the term corresponding to a.
- TM for $K^{c}:$ on input x, Run M on $F(\tilde{x})$ and accept of $M(F(\tilde{x}))$ accepts
$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists w\left(t_{1}+w=t_{2}\right)$
$\exists z \leqslant t A$ stands for $\exists z(z \leqslant t \wedge A)$ Bounded
$\forall z \leq t A$ stands for $\forall z(z \leq t \supset A)$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall z_{1} \leqslant t_{1} \exists z_{2} \leqslant t_{2} \forall z_{3} \leqslant t_{3} \ldots \exists z_{k} \leqslant t_{k} A(\vec{x}, \vec{z})$

Bounded Quantifiers
No quantifiers
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists w\left(t_{1}+w=t_{2}\right)$
$\exists z \leqslant t A$ stands for $\exists z(z \leqslant t \wedge A)$ Bounded
$\forall z \leq t A$ stands for $\forall z(z \leq t \supset A)\}$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall z_{1} \leq t_{1}, \exists z_{2} \leq t_{2} \forall z_{3} \leq t_{3} \ldots \exists z_{k} \leq t_{k} A(\vec{x}, \vec{z})$
Definition $A \exists \Delta_{0}$ formula has the form $\exists \underset{\Delta_{0} \text { formula }}{B(\vec{x}, \vec{z})}$
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
Definition $R(\vec{x})$ is a $\exists \Delta_{0}$-relation iff some $\exists \Delta_{0}$-formula represents' it
$\exists \Delta_{0}$ Formulas
Example Prime $=\left\{x \in \mathbb{N} \mid x^{\text {is }}\right.$ prinie $\}$ is a Δ_{0}-relation, represented by the following
Δ_{0}-formula:

$$
\begin{aligned}
& A(x) \stackrel{d}{=} \text { so }<x \wedge \forall z_{1} \leq x \forall z_{2} \leq x\left(x=z_{1} \cdot z_{2}>\left(z_{1}=1 \vee z_{1}=x\right)\right) \\
& \forall z_{1} \leq x \forall z_{2} \leq x\left((50<x) \wedge\left(x=z_{1} \cdot z_{2}>\left(z_{1}=\mid \vee z_{1} \cdot x\right)\right)\right)
\end{aligned}
$$

$\exists d_{0}$ Formulas
Lemma Every Δ_{0} relation is recursive
Lemma terry $\exists \Delta_{0}$ relation is re.
$\exists \Delta_{0}$ (Exists-Delta) Theorem every re. relation is represented by a $\exists \Delta_{0}$ formula

Example:

$$
\begin{aligned}
& K=\{x(\{x\} \text { halts on } x\} \text { is r.e. } \\
& A_{k}=\exists y \quad\left[\begin{array}{c}
y \text { describes tableaux of }\{x\} \\
\text { on mut } x \text { and final line of tableaux a } \\
\text { halts }
\end{array}\right]
\end{aligned}
$$

$\exists \Delta_{0}$ Theorem
Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be a total computable function.
Let $R_{f}=\left\{(\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x})=y\right\} \hookleftarrow$ call Then R_{f} is a $\exists \Delta_{0}$-relation.

GOD
any Re. elation is anthmetical

Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be total, computable
Then $\operatorname{graph}(f)=R_{f}=\{(\vec{x}, y) \mid f(\vec{x})=y\}$ is a $\exists \Delta_{0}$ relation
Proof of $\exists \Delta_{0}$ Theorem from Main Lemma
Let $R(\vec{x})$ be an re. relation [example $R(x)]$
Then $R(\vec{y})=\exists y S(\vec{x}, y)$ where s is recursive $K(x)=\exists y s(x, y)$
Since S is recursive, $f_{s}(\vec{x}, y)= \begin{cases}1 & \text { if }(\vec{x}, y) \in S \\ 0 & \text { otherwise }\end{cases}$
is total computable
By main lemma, $R_{f_{s}}$ is represented by a $\exists \Delta_{0}$ relation
So $R(\vec{x})=\exists y \underbrace{\exists z B}_{R_{f}}$ is represented by a $\exists \Delta_{0}$ relation

Let $K=\{x \mid\{x\}$ halts on input $x\}$
We will represent K by the formula:
where A is a recursive relation that accepts iff y 'is the tableaux of $T M\{x\}$, when run on input x and last configuration of y is halting
A is recursive so by main Lemma, A is represented by an $\exists \Delta_{0}$ formula
$\therefore K$ is represented by a $\exists \Delta$ o formula

Proof of Main Lemma: MAIN IDEA
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f} be $T M$ computing f
$R(x, y)$ will be a $\exists \Delta_{0}$ relation saying: $\exists m, d$ such that:
(1) c, d encode an $m-b y-m$ tableaux (described by $\vec{r}_{1} \ldots \vec{r}_{m}$):
(2) \vec{r}_{1} encodes start config of $M_{f} o n x$

(3) \vec{r}_{*} encodes last config, that halts and outputs y
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

Proof of Main Lemma: MAIN IDEA
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f}^{-} be TM computing f
$R(\vec{x}, y)$ will be a $\exists \Delta_{0}$ relation saying:
$A(x, y) \quad \exists m, c, d$ such that
formula
(1) c, d describe the tableaux given by $r_{1} \ldots r_{m} \ldots r_{m}$
(2) $r_{1} \ldots r_{m}$ encode start config of M_{f} on x
(3) Last m numbers $r_{(m \rightarrow \rightarrow m} \cdots r_{m^{2}}$ encode last config, containing y in first cells then B, and state is q_{2}
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence
- WARMUP: if exponentiation fyN x^{y} were in \mathscr{L}_{A}, this would be easier.
encode $57,3009,205,4,5$ by

$$
2^{57} \cdot 3^{3009} \cdot 5^{205} \cdot 7^{4} \cdot 11^{5}
$$

$\binom{$ ie $i^{\text {th }}$ number x sequence encoded by P_{i}^{x}, where }{$P_{l}=i^{4}$ smallest prime number }

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings) by a few (3) numbers (m, c, d)
- Need formulas that can talk about the $i^{\text {th }}$ number in the sequence
- WARMUP: if exponentiation fan x^{y} were in \mathscr{L}_{A}, this would be easier.
- But we Need to encode sequences using only $+,{ }^{\circ}, s$
* godel's β function does this using magic of chinese remainder theorem

Proof of Main Lemma (see pp 10-71)
Main idea: is a way of representing sequencer of numbers by numbers using $\exists \Delta$, formulas
Note: Prime power decomposition not useful here since we only have s, t, -
(ie. represent $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ by $2^{a_{1}} \cdot 3^{a_{2}} \cdot 5^{a_{3}} \cdot 7^{a_{4}}$)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1)
$$

where $\operatorname{rm}(x, y)=x \bmod y$

$$
x=q \cdot y+r
$$

Proof of Main Lemma ($R_{f}=$ graph $f f$) is an $\exists \Delta_{0}$ relation)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma $0 . \forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that $\forall i \leqslant n \beta(c, d, i)=r_{i}$
the pair (c, d) represents the sequence $\underbrace{r_{1}, \ldots, r_{n}}_{0}$ using β
entire tableaux of TM configuration

Corollary of Chinese Remainder Theorem

Proof of Main Lemma $\left(R_{f}=g r o p h(f)\right.$ is an re. relation $)$
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma 0. $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that $\forall i \leqslant n \quad \beta\left(c, d_{1} i\right)=r_{i}$ the pair (c, d) represents the sequence $\underbrace{r_{0} r_{1}, \ldots r_{n}}$ using β entire tableaux of $T M$ configuration

Lemma $1 \operatorname{graph}(\beta)$ is a Δ_{0} relation

Lemma O
Definition β-function

$$
\beta(c, d, i)=\operatorname{rm}(c, d(i+1)+1) \text { where } m(x, y)=x \bmod y
$$

Lemma 0 $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
b(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

ERT (Chinese Remainder Theorem)
Let $r_{0}, . ., r_{n}, m_{0}, \ldots, m_{n}$ be such that $0 \leq r_{i} \leq m_{i} \quad \forall i, \quad 0 \leqslant i \leqslant n \quad$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \quad \forall i j$ Then $\exists r$ such that $r m\left(r, m_{i}\right)=r_{i} \quad \forall i, 0 \leqslant i \leqslant n$

ERT (Chinese Remainder Theorem)
Let $r_{0}, \ldots, r_{n}, m_{0, \ldots}, m_{n}$ be such that:
(1) $0 \leqslant r_{i} \leqslant m_{i} \quad 0 \leqslant i \leqslant n$
(2) $g c d\left(m_{i}, m_{j}\right)=1 \forall i j, i \neq j$

Then $\exists r$ such that $r m\left(r, m_{i}\right)=r_{i} \forall i, 0 \leqslant i \leqslant n$
Proof (counting Argument: we will show $\exists r \leqslant M$, where $M=m_{0} \cdot m_{1} \cdots m_{n}$)

- The number of sequences $r_{0} \ldots r_{n}$ such that (I) holds is

$$
M=m_{0} \cdot m_{1} \cdot \ldots m_{n}
$$

- Each $r, 0 \leqslant r \leqslant M$ corresponds to a different sequence:

Ie. If $\forall i r m\left(r, m_{i}\right)=r_{i}$ and $\forall i r m\left(s, m_{i}\right)=r_{\text {. }}$ Then $r=s$ (mapping is $1-1$)
\therefore for every sequence $r_{0} \ldots r_{m}$, some $r \leqslant M$ mops to it
numbers $r \leqslant M$
 all sequences

$$
r_{r} \cdots r_{m}
$$

Lemma 0

Lemma $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c, d$ such that

$$
B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

$$
\begin{aligned}
\beta(c, d, i) & =r m(c, d(i+1)+1) \\
& =c \bmod d(i+1)+1
\end{aligned}
$$

Chinese Remainder Theorem
Let $r_{0}, \ldots, r_{n}, m_{0}, \ldots, m_{n}$ be such that
$0 \leq r_{i} \leq m_{i}$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$. Then $\exists r \quad m\left(r, m_{i}\right)=r_{i} \forall i$
Proof of Lemma
Let $d=\left(n+r_{0}+\ldots+r_{n}+1\right)$!
Let $m_{i}=d(i+1)+1$
claim $\forall i, j \operatorname{gcd}\left(m_{i} m_{j}\right)=1$ (proof Next page)
By CRT $\exists r=c$ so that $\beta(c, d, i)=\operatorname{rm}\left(c, m_{i}\right)=r_{i} \quad \forall i \in[n]$

$$
\beta(c, d, i) \stackrel{d}{=} c \bmod \underbrace{d(i N)+1}_{m_{i}}
$$

Claim Let $d=\left(n+r_{0}+r_{1}+\ldots+r_{n}+1\right)!, \quad m_{i}=d(i+1)+1$ then $\forall i \neq j \leq n \quad \operatorname{gcd}\left(m_{c}, m_{j}\right)=1$

PE Suppose p is a prime, and $p(\underbrace{d(i+1)+1}_{m_{i}}, p(\underbrace{d(j+1)+1}_{m_{j}}$ Then $p \mid[\underbrace{d(j+1)+1]}_{m_{j}}-\underbrace{[d(i+1)+1]}_{m_{j}}$ (assume $j>c)$
so $\quad P \mid d(j-i)$
But p cannot divide both d and $d(i+1)+1$ so $p / j-i$ But then $p \leq j-i<n$ so p / d \#

$$
d(i+1)+1 \operatorname{mot} p=1 \quad p \mid d(j-1)
$$

Proof of Main Lemma $\left(R_{f}=g r o p h(f)\right.$ is an re. relation $)$
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma 0. $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that $\forall i \leqslant n \beta\left(c, d_{1} i\right)=r_{i}$ the pair (c, d) represents the sequence $\underbrace{r_{0} r_{12}, r_{n}}$ using f entire tableaux of TM configuration

Lemma $1 \operatorname{graph}(\beta)$ is a Δ_{0} relation

Proof of Main Lemma (see pp 10-71)
Lemma $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that $B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n$
Lemma 1 graph (β) is a A_{0} relation
Prot We want a Δ_{0} formula $A(c, d, i, y)$ such that
A is true on input (c, d, i, y) iff $\beta(c, d, i)=y \quad c=x \cdot d_{x}$
$y=\beta(c, d, i) \Leftrightarrow c \bmod d(i+1)+1=y \quad . \dot{b} x_{y} y$
$\Leftrightarrow c=[\underbrace{d(1+1)+1}]+y$, where $y<d(i+1)+1{ }^{j / c}$

$$
\therefore y=\beta(c, d, i) \Leftrightarrow \underbrace{[\exists q \leqslant c(c=q(d(i+1)+1)+y) \wedge y<d(i+1)+1]}_{A_{\beta}(t, d, i, y)}]
$$

Proof of Main Lemma $\left(R_{f}=g r o p h(f)\right.$ is an re. relation $)$
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma 0. $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that $\forall i \leqslant n \beta\left(c, d_{1} i\right)=r_{i}$ the pair (c, d) represents the sequence $\underbrace{r_{0} r_{1}, \ldots r_{n}}$ using β entire tableaux of TM configuration

Lemma $1 \operatorname{graph}(\beta)$ is a A_{0} relation

Recap: we wanted to prove
$\exists \Delta_{0}$ (Exists-Delta) Theorem every rue. relation is represented by a $\exists \Delta_{0}$ formula

Which followed by Main Lemma:
f total, computable $\Rightarrow R_{f}$ is a $\exists \Delta_{0}$ relation

Recap: First Incompleteness Theorem
$1^{\text {st }}$ Incompleteness Theorem: TA is not axiomatizable
That is, any sound, axiomatizable theory is incomplete.
$\rightarrow P A$ is axiomatizuble. So assuming $P A$ is sound, it is incomplete (so there are sentences A such that weither A or $\neg A$ is provable from axioms of $P A$.)

$$
K^{c}=\underbrace{\{(x)(\{x\}(x) \text { doesnt halt }\}}_{F(\hat{x})} K
$$

Γ sound and axiomatizable $\Rightarrow \exists A,{ }^{7} A \nLeftarrow \Gamma$

