Announcements

HWZ out by tonight HWI, Test I will be returned MCXt week

Review of Definitions Language of arithmetic $J_{A} = 20, s, t, \cdot; = 3$ € = all Z_A-sentences TA > 2 A ∈ Q. / IN = A 3 True Anthmetic A theory Z is a set of sentences (over ZA) closed under logical consequence -We can specify a theory by a subset of sentences that logically implies all sentences in Z Σ is <u>consistent</u> iff $\Phi_{S} \neq \Sigma$ (iff $\forall A \in \Phi_{O}$, either A or $\uparrow A$) Not in Σ) Z is complete iff Z is consistent and VA either A or 7 A is in Z

Z is sound iff Z STA

Let M be a model/structure over LA Th $(\mathfrak{M}) = \{A \in \overline{\Phi}_{\mathcal{B}} \mid \mathfrak{M} \models A\}$ Th (M) is complete (for all structures M) Note TA = Th(IN) is complete, consistent, & sound VALID = ZAE Do | FAZ - smallest theory

Let Z be a theory Z is <u>axiomatizable</u> if there exists a set $\Gamma \leq \geq$ such that O Γ is recursive $O \geq Z = E A \in \Phi_0 | \Gamma \models A = E$

Theorem Z is axiomatizable iff Z is n.e. (P. 76 of Notes)

Definition Let
$$s_0=0$$
, $s_1=s_0$, $s_2=ss_0$, etc.
For a eIN, Let \tilde{a} be the term s_a corresponding to α .
Let $R(x)$ be a relation $R = IN^n$
Let $A(x)$ be an \overline{a}_A formula, with free variable x
Let $A(x)$ be an \overline{a}_A formula, with free variable x
 $A(x)$ represents R iff $\forall a \in IN$ $R(a)$ is true $\Leftrightarrow A(\tilde{a}) \in TA$

Example
$$R = N$$
 $R = \{a \in IN \mid a \text{ is even}\}$
 $A(x) \stackrel{d}{=} = = Y(y + y = x)$
 $R(3) = follow and IN = A($sso) = = = = Y(y + y = $sso)$
 $R(4) = true, and IN = A($ssso) = = = = Y(y + y = $ssso)$

Definition Let
$$s_0=0$$
, $s_1=s_0$, $s_2=s_50$, etc.
For a RN, Let \tilde{a} be the term s_a corresponding to α .
Let $R(x)$ be a relation $R \in IN^n$
Let $A(x)$ be an Z_A formula, with free variable χ
Let $A(x)$ be an Z_A formula, with free variable χ
 $A(x)$ represents R iff $\forall a \in IN$ $R(a)$ is true $\Leftrightarrow A(\tilde{a}) \in TA$

Defn A relation R is <u>arithmetical</u> iff there is a formula A E ZA that represents R (FIRST) INCOMPLETENESS THEOREM

EXISTS-DELTA THEOREM (pp 68-71): Every n.e. predicate/language is arithmetical and therefore the complement of any ne. language 'is arithmetical. Example.

(FIRST) INCOMPLETENESS THEOREM

EXISTS - DELTA THEOREM (pp 68-71):

Every r.e. predicate/language is arithmetical, and therefore the complement of an ne. Language is arithmetical

Proof of Incompleteness from Exists-Deita Theorem

- · If TA is axiomaticable, then TA is r.e.
- We will show that this implies that K is ne. (to get a contradiction)

- Assume TA is r.e. and let M be a TM s.t. Z(M) = TA

- Since K^c is complement of an r.e. Language, by <u>Exists-Delta</u> Thm there is a formular F(x) such that VacIN: F(a) ETA 'Iff a EK^c, where a is the term corresponding to a.

- TM for K^c: on mput x, Run M on F(x) and accept iff M(F(x)) accepts () 30, Formulas

$$t_1 \leq t_2$$
 stands for $\exists w(t_1 + w = t_2)$
 $\exists z \leq t A$ stands for $\exists z (z \leq t \land A)$ Bounded
 $\forall z \leq t A$ stands for $\forall z (z \leq t \supset A)$ Bounded
 $\forall uantifiers$
Detinition A formula is a A_0 -formula if it has
the form $\forall z_1 \in t_1 \exists z_2 \leq t_2 \forall z_3 \leq t_3 \dots \exists z_k \leq t_k A(\vec{x}, \vec{z})$
Bounded Quantifiers No
quantifiers
Definition A relation $R(\vec{x})$ is a A_0 -relation iff
some A_0 -formula represents it

30, Formulas

$$t_1 \leq t_2$$
 stands for $\exists W(t_1 + W = t_2)$
 $\exists z \leq t A$ stands for $\exists z (z \leq t \land A)$ Bounded
 $\forall z \leq t A$ stands for $\forall z (z \leq t \supset A)$ Pountifiers
Definition A formula is a A_0 -formula if it has
the form $\forall z \in t, \exists z \geq t_2 \forall z \leq t_3 ... \exists z \leq t_k A(\vec{x}, \vec{z})$
Definition A $\exists \Delta_0$ formula has the form $\exists \forall B(\vec{x}, \vec{y}, \vec{z})$
 Δ_0 formula
Definition A relation $R(\vec{x})$ is a Δ_0 -relation iff
some Δ_0^- formula represents it
Definition $R(\vec{x})$ is a $\exists \Delta_0^-$ formula
 $P(\vec{x})$ is a $\exists \Delta_0^-$ relation iff some $\exists \Delta_0^-$ formula
 $P(\vec{x})$ is a $\exists \Delta_0^-$ relation iff some $\exists \Delta_0^-$ formula

$$\left(A(x) \stackrel{d}{=} sq < x \land \forall z_1 \leq x \forall z_2 \leq x (x = z_1 \cdot z_2) (z_1 = 1 \lor z_1 = x)\right)$$

$$\forall z_1 \in \times \forall z_2 \in \mathbf{X} \left((so < \mathbf{x}) \land (\mathbf{x} = z_1, z_2) \circ (z_1 = |\mathbf{x}| + z_2, \mathbf{x}) \right)$$

ILemma Every
$$A_{2}$$
 relation is recursive
Lemma Every $\exists A_{2}$ relation is recursive
Lemma Every $\exists A_{2}$ relation is r.e.
 $\exists A_{2}$ (Exists-Delta) Theorem every r.e.
relation is represented by a $\exists A_{2}$ formula

Example :

30, Theorem

Main Lemma Let
$$f: IN \rightarrow IN$$
 be a total
computable function.
Let $R_f = \{ (\vec{x}, \gamma) \in IN^{n+1} \mid f(\vec{x}) = \gamma \}$ called
graph(f)
Then R_f is a $\exists A_o$ -relation.

Main Lemma Let
$$f: iN \rightarrow iN$$
 be total, computable
Then $graph(f) = R_{f} = \frac{1}{2}(x_{i}y) | f(x) = y^{3}$ is a $\exists A_{0}$ relation
Proof of $\exists A_{0}$ Theorem from Main Lemma
Let $R(x)$ be an r.e. relation $[e \times ample R(x)]$
Then $R(x) = \frac{1}{2}yS(x, y)$ where S is recursive $K(x) = \exists y S(x, y)$
Since S is recursive, $f_{S}(x, y) = \begin{cases} 1 & \text{if } (x_{i}y) \in S \\ 0 & \text{otherwise} \end{cases}$
To total computable
By main lemma, $R_{f_{S}}$ is represented by a $\exists A_{0}$ relation
So $R(x) = \exists y \exists z B$ is represented by a $\exists A_{0}$ relation
 $R_{f_{S}}$

We will represent K by the formula:

$$A_{\mu} = . \exists y A(x, y)$$
$$= \exists z F(x, y, \overline{z}),$$
$$\Delta_{\mu}$$

where A is a recursive relation. that accepts iff y is the tableaux of TM Ex3, when run on input x and last configuration of y is halting

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

·WARNUP: if exponentiation from xY were in LA, this would be easier.

encode 57, 3009, 205, 4, 5 by

$$a^{57} \cdot 3^{3009} \cdot 5^{205} \cdot 7^{4} \cdot 11^{5}$$

(ie ît number x sequence encoded by P_{i}^{\times} , where
 $P_{i} = i^{4}$ smallest prime number

Proof of Main Lemma: MAIN IDEA

- Need to encode an arbitrarily long sequences (of Numbers/strings)
 by a few (3) numbers (m, c, d)
- Need formulas that can talk about the it number in the sequence

·WARNUP: if exponentiation from xY were in LA, this would be easier.

• But we need to encode sequences using only +, •, s * gödel's & function does this using magic of chinese remainder theorem

Proof of Main Lemma
$$(R_{f} = graph(f) \text{ is an } \exists d_{0} \text{ relation})$$

Definition β -function
 $\beta(c, d, i) = rm(c, d(i+i)+1)$ where $rm(k, y) = k \mod y$
Lemma O. $\forall n, r_{0}, r_{1}, ..., r_{n}$ $\exists c_{1} d$ such that $\forall i \leq n \beta(c, d, i) = r_{i}$
the pair (c, d) represents the sequence $Gr_{1,2}, r_{n}$ using β
entire tableaux
of TM configuration
Corollary of
Chinese Remainder Theorem

Proof of Main Lemma
$$(R_{f} = growth)$$
 is an representation)
Definition β -function
 $\beta(c, d, i) = rm(c, d(i+i)+1)$ where $rm(x, y) = x \mod y$
Lemma O. $\forall n, r_{0}, r_{1}, ..., r_{n} \xrightarrow{\exists c_{1}} d$ such that $\forall i \leq n \beta(c_{1}d, i) = r_{1}$
the pair $(c_{1}d)$ represents the sequence $(c_{1}r_{1}, ..., r_{n} using \beta)$

Lemma O

Definition B-function $\beta(c,d,i) = rm(c,d(i+i)+i)$ where $rm(x,y) = x \mod y$ Lemma O. Vn, ro, ri, ..., rn 3c, d such that $\beta(c,d,i) = f_i \quad \forall i \quad 0 \le i \le n$ ERT (chinese Remainder Theorem) Let $f_{0,...,n_i}$, $m_{0,...,m_n}$ be such that $0 \le f_i \le m_i$, $\forall i'_i$, $0 \le i \le n$ and $gcd(m_i, m_j) = 1$ $\forall i'_j$ Then Fr such that $rm(r, M_i) = r_i \quad \forall i, \; 0 \leq i \leq n$

ERT (chinese Remainder Theorem)
Let
$$r_{0,...,n}r_{n}$$
, $m_{0,...,n}m_{n}$ be such that:
(1) $0 \le r_{i} \le m$; $0 \le i \le n$
(2) $gcd(m_{i},m_{j}) = | \forall c_{j}|, i \ddagger j$
Then $\exists r$ such that $rm(r, m_{i}) = r_{i} \forall c_{i}, 0 \le i \le n$
Proof (counting Argument: we will show $\exists r \le M$, where $M \ge m_{0} \cdot m_{1} \cdots m_{n}$)
• The number of sequences $r_{0} - r_{n}$ such that (1) holds is
 $M = m_{0} \cdot m_{1} \cdots m_{n}$
• Each $r_{i}, 0 \le r \le M$ corresponds to a different sequence:
I. If $\forall i rm(r, m_{i}) = r_{i}$ and $\forall i rm(s, m_{i}) = r_{i}$
Then $r \ge s$ (mapping is 1-1)
• for every sequence $r_{0} - r_{m}$, some $r \le M$
 m_{0} ways to it

Lemma O

Lemma
$$\forall n, r_0, r_1, ..., r_n \exists c, d$$
 such that
 $\beta(c, d, i) = r_i \quad \forall i, 0 \le i \le n$

$$\beta(c, d, i) = rm(c, d(i+i)+1)$$

= c mod d(i+i)+1

$$\frac{p_{noof} of Lemmab}{Let d = (n+r_{o}+..+r_{n}+1)!}$$
Let $m_{i} = d(i+i)+1$

$$\frac{claim}{Vi,j} gcd(m_{i}m_{j})=1 \quad (proof Next page)$$
By CRT $\exists r = c$ so that $\beta(c_{i}d_{i}i) = rm(c_{i}m_{i}i) = r_{i}$ $\forall i \in [n]$

$$\frac{\beta(c_{i}d_{i}i)}{m_{i}} = c \mod d(i+i)+1$$

Claim Let
$$d = (n + r_0 + r_1 + ... + r_n + i) i$$
, $m_i = d(i+i) + i$
then $\forall i \neq j = n$ $gcd(m_i, m_j) = i$

PE suppose p is a prime, and $p[\frac{d(i+i)+i}{m_i}, p[\frac{d(j+i)+i}{m_j}]$
Then $p[\frac{d(j+i)+i}{m_j}] - \frac{(d(b+i)+i)}{m_j}$ (assume $j > i$)
So $p[d(j-i)$

But then $P \leq j \leq n \leq p/d$ # $p \leq j \leq n \leq p/d$

$$d(i_i)+i_j \mod p = j_j = p \mid d(j-i)$$

Proof of Main Lemma
$$(R_t = graphtf)$$
 is an re. relation)
Definition β -function
 $\beta(c, d, i) = rm(c, d(i+i)+1)$ where $rm(x, y) = x \mod y$
Lemma 0. $\forall n, r_0, r_1, \dots, r_n$ $\exists c_i d$ such that $\forall i \leq n \beta(c_i d, i) = r_i$
the pair $(c_i d)$ represents the sequence $Gr_{1,2}, r_n$ using β
entire tableaux
of TM configuration

Proof of Main Lemma (see pp 10-71)
Lemma 0
$$\forall n, r_0, r_1, \dots, r_n \exists c_i d_{such that } \beta(c_i d_i i) = r_i \quad \forall i, o \leq i \leq n$$

Lemma 1 graph(β) is a d_0 relation
Proof We want a d_0 formula $A(c_i d_i i, \gamma)$ such that
A is true on input $(c_i d_i i, \gamma)$ iff $\beta(c_i d_i i) = \gamma$. Convert
 $\gamma = \beta(c_i d_i i) \iff c \mod d(i+i)+1 = \gamma$
 $\Rightarrow c = [d(i+i)+1]q+\gamma$, where $\gamma < d(i+i)+1]$
 $\gamma = \beta(c_i d_i i) \iff [\exists q \leq c (c = q(d(i+i)+1) + \gamma) \land \gamma < d(i+1)+1]$
 $A_{\beta}(c_i d_i i, \gamma)$

Proof of Main Lemma
$$(R_{f} = graph H)$$
 is an re. relation)
Definition β -function
 $\beta(c, d, i) = rm(c, d(i+i)+1)$ where $rm(x, y) = x \mod y$
Lemma O. $\forall n, r_{0}, r_{1}, ..., r_{n} \xrightarrow{\exists c_{1}} d$ such that $\forall i \leq n \beta(c, d, i) = r_{i}$
the pair (c, d) represents the sequence $G(r_{1}, ..., r_{n} using f)$
entire tableaux
of TM configuration

1st Incompleteness Theorem: TA is Not axiomatizable That is, any sound, axiomatizable theory is incomplece.

-> PA is axiomatizable. So assuming PA us sound, it is incomplete (so there are sentences A such that weither A or 7A is provable from axioms of PA.)

$$K^{c} = \frac{f(x)(xx_{x}) \text{ doesn't hall}}{F(x)} K$$

r sound and axiomatizable ⇒ ∃A, 7A & r