UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2017 EXAMINATIONS

CSC 438H1F/2404H1F

Duration - 3 hours No Aids Allowed

There are 9 questions worth a total of 100 marks.

Answer all questions on the question paper, using backs of pages for scratch work.

Check that your exam book has 9 pages (including this cover page).

	se underline your family name.)		
Student Number			
	FOR USE IN MARKING:		
	1/12		
	2/12	٠	
	3/10		
	4/10		
	5/10		
	6/8		
	7/8		
	8/12		
	9/18		

Total:_____/100

1. Let $\mathcal L$ be a predicate calculus language and let $\mathcal M$ be an $\mathcal L$ -structure. Let

$$\Sigma = \operatorname{Th}(\mathcal{M}) = \{A \mid A \text{ is an } \mathcal{L}\text{-sentence and } \mathcal{M} \models A\}$$

[7] a) Prove that Σ is a theory (i.e. prove that Σ is closed under logical consequence).

[5] b) Prove that Σ is a complete theory.

[12] 2. The following are the first two Peano Axioms:

P1:
$$\forall x (sx \neq 0)$$

P2:
$$\forall x \forall y (sx = sy \rightarrow x = y)$$

Is it true that P1, P2
$$\models \forall x(x = 0 \lor \exists y(x = sy))$$
?

If true, give a suitable LK proof justifying this (see the next question for the equality axioms) If false, justify by giving a suitable structure.

[10] 3. Give an LK proof of the sequent

$$\forall x(x+0=x) \rightarrow \forall x \forall y(x+(y+0)=x+y)$$

You do not need to put in weakenings or exchanges.

Here are the LK equality axioms:

EL1:
$$\rightarrow t = t$$

EL2:
$$t = u \rightarrow u = t$$

EL3:
$$t = u, u = v \rightarrow t = v$$

EL4:
$$t_1 = u_1, ..., t_n = u_n \rightarrow ft_1...t_n = fu_1...u_n$$
, for each f in \mathcal{L} , where f is an n -ary function symbol.

EL5:
$$t_1 = u_1, ..., t_n = u_n, Pt_1...t_n \rightarrow Pu_1...u_n$$
, for each P in \mathcal{L} , where P is an n -ary predicate symbol.

4. Recall that **TA** (True Arithmetic) is the set of all sentences A in the language $\mathcal{L}_A = [0, s, +, \cdot; =]$ of arithmetic such that A is true in the standard model $\underline{\mathbb{N}}$. Suppose that A(x) is a formula of \mathcal{L}_A whose only free variable is x, such that $A(s^n0)$ is in **TA** for arbitrarily large $n \in \mathbb{N}$. Show that the infinite set of sentences

$$\mathbf{TA} \cup \{A(c), c \neq 0, c \neq s0, c \neq ss0, \cdots\}$$

is satisfiable, where c is a new constant.

$$A = \{x \mid \exists y R(x,y)\}$$

[8] 6. Let $f_1, f_1, f_2, ...$ be a list of all total computable functions $f : \mathbb{N} \to \mathbb{N}$. Define $F(x, y) = f_x(y)$. Prove that F is not computable.

[8]	7.	Recall that there is a theorem in the Notes that states that every Δ_0 sentence in TA is in RA . Use this to prove that every $\exists \Delta_0$ sentence in TA is in RA .

- 8. Suppose that A(x) is an $\exists \Delta_0$ formula which represents the r.e. set K in PA.
 - (a) State what it means for A(x) to represent K in PA.

[2]

[10] (b) Show that there is a consistent extension of Σ of **PA** such that A(x) does not represent K in Σ . (Hint: Form Σ by adding a false axiom to **PA**.)

[18] 9. We say that a function $f: \mathbb{N} \to \mathbb{N}$ is non-decreasing if $f(x) \leq f(x+1)$ for all $x \in \mathbb{N}$. Let

$$A = \{x \mid \{x\}_1 \text{ is nondecreasing}\}$$

Is A r.e.? Is A^c r.e.? Justify your answer. (Do not use Rice's Theorem).