UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2016 EXAMINATIONS

CSC 438H1F/2404H1F

Duration - 3 hours No Aids Allowed

There are 6 questions worth a total of 100 marks. Answer all questions on the question paper, using backs of pages for scratch work. Check that your exam book has 9 pages (including this cover page).

PLEASE COMPLETE THIS SECTION:

Name ___

(Please underline your family name.)

Student Number

FOR USE IN MARKING:

 1.
 /10

 2.
 /26

 3.
 /10

 4.
 /10

 5.
 /4

 6.
 /8

 7.
 /8

 8.
 /10

 9.
 /10

 10.
 /10

 Total:
 /100

[10] 1. Let f and g be unary function symbols, and let A be the formula $\forall x(fgx = x)$ and let B be the formula $\forall x(gfx = x)$. Prove that $A \not\models B$.

,

2. Let \mathcal{L}_s (the vocabulary of successor) be the vocabulary [0, s; =]. Let Th(s) (theory of successor) be the set of all sentences over this vocabulary which are logical consequences of the following infinite set Ψ_s of axioms:

P1) $\forall x(sx \neq 0)$ P2) $\forall x \forall y (sx = sy \supset x = y)$ Q) $\forall x(x = 0 \lor \exists y(x = sy))$ (every nonzero element has a predecessor)

S1) $\forall x(sx \neq x)$ S2) $\forall x(ssx \neq x)$ S3) $\forall x(sssx \neq x)$

(a) Prove that for each $n \ge 1$ the axiom Sn is not a logical consequence of $\{P1, P2, Q, S1, S2, ..., Sn-1\}$. (Do this by giving a model.)

[8] (b) Prove using (a) that Th(s) is not finitely axiomatizable. That is, show that there is no finite set Γ of sentences in Th(s) such that every sentence in Th(s) is a logical consequence of Γ . (Note that the sentences in Γ are not necessarily among the original set Ψ_s of axioms.)

(c) Use the fact that every sentence true in the standard model $\underline{\mathbb{N}}_s$ for the language \mathcal{L}_s is in Th(s) to show that Th(s) is decidable.

[10] 3. Use results proved in class to prove that the function $f(x) = \mu y T(x, x, y)$ has no total computable extension.

[4] 4. Give an example of an arithmetical relation which is not r.e.

[4] 5. Give an example of a relation which is not arithmetical.

[8] 6. Let \mathcal{L} be a first-order language with finitely many function and predicate symbols. Prove that the set of unsatisfiable \mathcal{L} -sentences is r.e., using results proved in class.

[8]

7. Recall that **RA** is a theory with 9 axioms P1, ... P9 over the language \mathcal{L}_A . The **RA Representation Theorem** states that every r.e. relation is representable in **RA** by an $\exists \Delta_0$ formula. Use this theorem to prove that **RA** is undecidable. [10] 8. Use the **RA Representation Theorem** (see previous question) to prove that every sound theory Σ with vocabulary \mathcal{L}_A is undecidable. (Recall that Σ is *sound* if $\underline{\mathbb{N}}$ is a model of Σ .)

[10] 9. Let f be a unary function (not necessarily total). Recall that graph(f) is the relation $R_f(x, y) = (y = f(x))$. Prove that if graph(f) is r.e. then f is recursive. DO NOT USE CHURCH'S THESIS. (Or use Church's thesis for part credit.)

[10] 10. Let Σ be an axiomatizable theory over the vocabulary \mathcal{L}_A of arithmetic such that every r.e. relation is representable in Σ by some $\exists \Delta_0$ formula. Show that there is a $\forall \Delta_0$ sentence (one of the form $\forall yB$, where B is bounded) such that $\Sigma \not\vdash A$ and $\Sigma \not\vdash \neg A$.