
CS 4995 Notes Fall, 2022

S. Cook and T. Pitassi

REFERENCES

The first two references have especially influenced these notes and are cited from time to
time:

[Buss] Samuel Buss: Chapter I: An introduction to proof theory, in Handbook of Proof
Theory, Samuel Buss Ed., Elsevier, 1998, pp1-78.

[B&M] John Bell and Moshe Machover: A Course in Mathematical Logic. North-
Holland, 1977.

Other logic texts: The first is more elementary and readable.

[Enderton] Herbert Enderton: A Mathematical Introduction to Logic. Academic Press,
1972.

[Mendelson] E. Mendelson: Introduction to Mathematical Logic. Wadsworth & Brooks/Cole,
1987.

Computability text:

[Sipser] Michael Sipser: Introduction to the Theory of Computation. PWS, 1997.

[DSW] M. Davis, R. Sigal, and E. Weyuker: Computability, Complexity and Lan-
guages: Fundamentals of Theoretical Computer Science. Academic Press, 1994.

Propositional Calculus

Throughout our treatment of formal logic it is important to distinguish between syntax and
semantics. Syntax is concerned with the structure of strings of symbols (e.g. formulas and
formal proofs), and rules for manipulating them, without regard to their meaning. Semantics
is concerned with their meaning.

1

Syntax

Formulas are certain strings of symbols as specified below. In this chapter we use formula
to mean propositional formula. Later the meaning of formula will be extended to first-order
formula.

(Propositional) formulas are built from atoms P1, P2, P3, . . ., the unary connective ¬, the
binary connectives ∧,∨, and parentheses (,). (The symbols ¬,∧ and ∨ are read “not”,
“and” and “or”, respectively.) We use P,Q,R, ... to stand for atoms. Formulas are defined
recursively as follows:

Definition of Propositional Formula

1) Any atom P is a formula.

2) If A is a formula so is ¬A.

3) If A,B are formulas, so is (A ∧B).

4) If A,B are formulas, so is (A ∨B).

All (propositional) formulas are constructed from atoms using rules 2) - 4).

Examples of formulas: P , (P ∨Q), (¬(P ∧Q) ∧ (¬P ∨ ¬Q)).

A subformula of a formula A is any substring of A which is a formula. For example, P , Q,
(P ∧Q) and ¬(P ∧Q) are all subformulas of ¬(P ∧Q), but P∧ is not a subformula.

We will use ⊃ (“implies”) and ↔ (“is equivalent to”) as abbreviations as follows:

(A ⊃ B) stands for (¬A ∨B)

(A↔ B) stands for ((A ⊃ B) ∧ (B ⊃ A))

Unique Readability Theorem: (The grammar for generating formulas is unambiguous)
Suppose A,B,A′, B′ are formulas, c and c′ are binary connectives, and (AcB) =syn (A′c′B′).
Then A =syn A

′, B =syn B
′ and c =syn c

′.

Here we write A =syn A
′ instead of A = A′ to emphasize that A and A′ are equal as strings

of symbols (syntactic identity, rather than semantic identity). Note that =syn is a symbol of
the “metalanguage” rather than the formal “object language”.

Proof Assign weights 0 to ¬
1 to each binary connective ∧,∨
1 to (
−1 to)
−1 to each atom P.

2

Definiton The Weight of A is the sum of the weights of the symbols in A.

Lemma The weight of any formula is −1, but the weight of any proper initial segment is
≥ 0. (Hence no proper initial segment of a formula is a formula. By a proper initial segment
we mean an inital segment which is not the whole formula.)

Proof Structural induction on length of A. By structural induction we mean induction on
the length of A, following the definition of propositional formula given above. The base case
of the induction is the case in which A is an atom P . The lemma is obvious in this case.
The induction step has one case for each of the three ways of constructing new formulas
from simpler formulas, using ¬,∧,∨. For example, in the case of ∧, the task is to prove the
lemma for (A ∧ B), assuming (by the induction hypothesis) that the lemma holds for both
A and B. We leave this as an exercise.

The Unique Readability Theorem follows from the Lemma, because if (AcB) =syn (A′c′B′)
then either A must be an initial segment of A′ or vice versa, so in either case A = A′ by the
Lemma.

In practice we will omit some of the parentheses in a formula when it does not cause ambigu-
ity. For example, we may write P ∨Q when we really mean (P ∨Q). We use the convention
associativity to the left for ∧ and ∨. For example,

(A1 ∨ A2 ∨ A3 ∨ A4) stands for (((A1 ∨ A2) ∨ A3) ∨ A4)

Semantics

Definition A truth assignment is a map τ : {atoms} → {T, F}.

(Here {T, F} represents { true, false }). A truth assignment τ can be extended to assign
either T or F to every formula, as follows:

1) (¬A)τ = T iff Aτ = F

2) (A ∧B)τ = T iff Aτ = T and Bτ = T

3) (A ∨B)τ = T iff Aτ = T or Bτ = T

Definition τ satisfies A iff Aτ = T ; τ satisfies a set Φ of formulas iff τ satisfies A for all
A ∈ Φ. Φ is satisfiable iff some τ satisfies Φ; otherwise Φ is unsatisfiable. Similarly for A.

IMPORTANT DEFINITION Φ |= A (i.e. A is a logical consequence of Φ) iff τ satisfies
A for every τ such that τ satisfies Φ.

Notation We sometimes use the notation |= A for ∅ |= A, and B |=A for {B} |= A, and
B,C |= A for {B,C} |= A, etc.

3

Transitivity of Logical Consequence: If Φ |= A and Φ ∪ {A} |= B, then Φ |= B.

Proof: EXERCISE

Definition A formula A is valid iff |= A (i.e. Aτ = T for all τ). A valid propositional formula
is called a tautology. We say that A and B are equivalent (written A⇐⇒ B) iff A |= B and
B |= A.

Note that ⇐⇒ refers to semantic equivalence, as opposed to =syn, which indicates syntactic
equivalence. For example, (P ∨Q)⇐⇒ (Q ∨ P), but (P ∨Q) 6=syn (Q ∨ P).

Convention: P,Q,R stand for distinct atoms, so for example (P∨Q) 6=syn (Q∨P). However
A,B,C, ... could stand for identical formulas.

Proposition Φ |= A iff Φ∪{¬A} is unsatisfiable. Also A is a tautology iff ¬A is unsatisfiable.

Proof: Immediate from the definitions of “unsatisfiable” and |=.

Examples: (Verify these)

The following are tautologies for all formulas A,B,C:
A ∨ ¬A
A ⊃ A
¬(A ∧ ¬A)
(¬A ∨ ((A ∧B) ∨ (A ∧ ¬B))

Logical consequence:
(A ∧B) |= (A ∨B)

Equivalences:
(A ∨B)⇐⇒ (B ∨ A) (∨ is commutative)
(A ∧B)⇐⇒ (B ∧ A) (∧ is commutative)
(A ∨ (B ∨ C))⇐⇒ ((A ∨B) ∨ C) (∨ is associative)
(A ∧ (B ∧ C))⇐⇒ ((A ∧B) ∧ C) (∧ is associative)
(A ∧ (B ∨ C))⇐⇒ ((A ∧B) ∨ (A ∧ C)) (∧ distributes over ∨.)
(A ∨ (B ∧ C))⇐⇒ ((A ∨B) ∧ (A ∨ C)) (∨ distributes over ∧.)
¬(A ∨B)⇐⇒ (¬A ∧ ¬B) (De Morgan’s Law)
¬(A ∧B)⇐⇒ (¬A ∨ ¬B) (De Morgan’s Law)
(A ⊃ B)⇐⇒ (¬B ⊃ ¬A) (contrapositive)

Exercise 1 Prove the following Duality Theorem by structural induction on A: Let A′

be the result of interchanging ∨ and ∧ in A, and replacing P by ¬P for each atom P . Then
A′ ⇐⇒ ¬A.

Exercise 2 Give a semantic proof of the Craig Interpolation Lemma: Given propo-
sitional formulas A and B, let S be the set of atoms which occur in both A and B, and

4

assume that S is nonempty. If A ⊃ B is valid, then there is a formula C (an “interpolant”)
containing only atoms from S such that both A ⊃ C and C ⊃ B are valid.

Remark: The Lemma still holds even when S is empty, provided we include the symbols 0 and
1 (meaning False and True) as building blocks in our definition of formula. It is illuminating
to consider this special case when trying to find the proof.

DNF and CNF

A formula of the form (A1 ∨ A2 ∨ ... ∨ An) is said to be a disjunction of the formulas
A1, A2, ..., An. If n = 1, then the disjunction is just the formula A1. If n ≥ 3, then according
to clause 4) in the definition of propositional formula (see page 2), extra parentheses must
be inserted in order to make this a syntactically correct formula. Since ∨ is associative,
the meaning of the formula does not depend on how these parentheses are inserted. For
definiteness, we will use the convention association to the left. Thus, for example

(A1 ∨ A2 ∨ A3 ∨ A4) means (((A1 ∨ A2) ∨ A3) ∨ A4)

Similarly, (A1 ∧ A2 ∧ ... ∧ An) is said to be a conjunction of the formulas A1, A2, ..., An,
and again we use the convention association to the left to specify the location of the extra
parentheses.

Definitions: A literal ` is an atom P , or a negated atom ¬P . (We sometimes write P̄ for
¬P .)

A clause C is a disjunction of literals such that no variable occurs twice (negated or not) in
the disjunction.

A formula is in conjunctive normal form (CNF) if it is a conjunction of one or more clauses.

Note: We will consider the empty conjunction ∧∅ to be a CNF formula, even though it is
not a formula according to our definition on page 2. By way of semantics, ∧∅ is valid.

Examples: The following formulas are in CNF:

∧∅
Q
¬Q
(P ∨ ¬Q ∨R)
¬R ∧ (R ∨ S) ∧ (¬R ∨ ¬S)

The dual notion to CNF is DNF (disjunctive normal form). We say an ∧-clause is a con-
junction of literals with no repeated variable, and a formula is in DNF if it is a disjunction
of ∧-clauses.

We allow the empty disjunction ∨∅ to be a DNF formula, with the semantics that ∨∅ is
unsatisfiable.

5

Examples of formulas in DNF can be obtained by interchanging ∧ and ∨ in the above
examples of CNF formulas.

Theorem: Every formula is equivalent to a formula in CNF, and to a formula in DNF.

Proof: One way to form a DNF equivalent to A is to put in an ∧-clause corresponding to
each truth assignment satisfying A. For example, if the truth assignment P τ = F , Qτ = T ,
Rτ = F satisfies A, then include the ∧-clause ¬P ∧ Q ∧ ¬R in the disjunction forming the
DNF formula. If A is unsatisfiable, then its DNF is the empty disjunction ∨∅.

CNF equivalent formulas are constructed in a dual fashion. �

Of course CNF and DNF equivalent formulas are far from unique. For example, (P∨Q)∧(P∨
¬Q) is a CNF formula, and it is equivalent to the simpler CNF formula P . A traditional (but
computationally intractable) problem is to find a smallest DNF (or CNF) formula equivalent
to a given formula.

Exercise 3 Prove that every CNF formula equivalent to

(P1 ∧Q1) ∨ (P2 ∧Q2) ∨ ... ∨ (Pn ∧Qn)

must have at least 2n clauses. (Hint: Show that for every assignment of either P or Q to
each of the subscripts {1, 2, ..., n} there is a clause in the CNF which has exactly one of Pi,
Qi for each i, according to whether P or Q is assigned to i. For example, if n = 3, then
there must be a clause whose positive literals are exactly {Q1, P2, Q3}. (A literal is positive
if is has no ¬.)

Formal Proofs

One way to establish that a formula A with n atoms is a tautology is to verify that Aτ = T
for all 2n truth assignments τ to to the atoms of A. A similar exhaustive method can be used
to verify that A is a logical consequence of a finite set Φ of formulas. However another way is
to use the notion of a formal proof, which may be both more efficient and more illuminating.
A formal proof is a syntactic notion, in contrast to validity, which is a semantic notion.
Many formal proof systems have been studied. Here we present two examples: resolution
and Gentzen’s system PK. We give a brief introduction to the former, but we concentrate
on the latter, since it will serve as the basis for our proof system for the predicate calculus.

Resolution

Resolution is important because it serves as the basis of most automated theorem provers,
and is has been thoroughly studied and analyzed. Resolution in the propositional calculus
is a proof system for establishing the unsatisfiability of CNF formulas. However it can be
generalized to apply to arbitrary propositional formulas A, establishing validity if A is valid,
or unsatisfiability if A is unsatisfiable, or that Φ |= A if that is the case. According to the
Proposition on page 4, all these things can be reduced to establishing the unsatisfiability of

6

a set of formulas. The next result shows that it is sufficient to establish the unsatisfiability
of a set of clauses. The condition that the set Φ of formulas is finite is made less important
by the Propositional Compactness Theorem (see page 14).

SAT Theorem: There is a polynomial time procedure which transforms a given finite set
Φ of propositional formulas to a finite set S = SΦ of clauses, such that Φ is satisfiable iff S
is satisfiable.

Proof sketch: Our first try might be to place every formula in Φ in CNF, and let S be the
set of all clauses that occur as a conjunct in one of these CNF formulas. Indeed this S is
satisfiable iff Φ is satisfiable (because the conjunction of the clauses in S is equivalent to the
conjunction of the formulas in Φ), but by Exercise 3 this is not a polynomial time procedure.

The correct proof is based on a standard method for showing that the problem General
Propositional Satisfiability is polynomial time reducible to SAT (satisfiability of CNF for-
mulas). (See any text on NP-completeness.) The idea is to introduce a new atom PB for
every subformula B of every formula in Φ, except let PB be B if B is a literal. Now place in
S clauses which assert that each new atom PB has the appropriate truth value with respect
to the atoms or literals corresponding to the principle subformulas of B. Finally place in S
the clause PA, for every formula A in Φ.

For example, if Φ consists of the single formula

A = (Q ∧R) ∨ ¬Q

then we define B = (Q ∧R), and introduce the new atoms PA and PB. Let

S = {P̄B ∨Q, P̄B ∨R,PB ∨ Q̄ ∨ R̄, P̄A ∨ PB ∨ Q̄, PA ∨ P̄B, PA ∨Q,PA}

The first three clauses in S assert PB ⇐⇒ (Q ∧ R), and the second three clauses assert
PA ⇐⇒ (PB ∨ ¬Q).

Note that A is not equivalent to the conjunction of the clauses in S, but A is satisfiable iff
S is satisfiable (in fact both are satisfiable). �

Exercise 4 Give a truth assignment demonstrating the lack of equivalence asserted in the
last sentence above. (See the definition of ⇐⇒, bottom of page 3.)

Notation: If ` is a literal, then ¯̀ is defined to be P̄ if ` = P , and P if ` = P̄ . We say that
¯̀ is the complement of `.

Order Convention: We think of a clause as a set of literals, meaning their disjunction.
Thus if two clauses have the same literals, but written in different orders or with different
repetitions, we treat them as the same clause.

Resolution Rule: Let C1, C2 be clauses of the form C1 = (A∨ `), and C2 = (B ∨ ¯̀), where
A and B are clauses not containing ` or ¯̀. Then the resolvant of C1 and C2 is the clause

7

C3 = (A ∨ B). We assume that A and B have no literal clashes, so that (A ∨ B) cannot
contain both a literal and its complement.

Examples: The resolvant of P and P̄ is the empty clause ∨∅. The resolvant of (P ∨ Q)
and (Q̄ ∨ P) is P . The clauses (P ∨ Q) and (P̄ ∨ Q̄) have no resolvant, because they have
two clashes. The resolvant of (P ∨ Q̄ ∨R) and (Q ∨ S) is (P ∨R ∨ S).

Resolvant Soundness Principle: If C3 is the resolvant of C1 and C2, then

C1, C2 |= C3

That is, the resolvant of two clauses is a logical consequence of the clauses. (See the IM-
PORTANT DEFINITION, page 3.) This applies in particular if C3 is the empty clause ∨∅,
which is unsatisfiable.

RES Definition: A resolution refutation of a set S of clauses is a sequence C1, C2, ..., Cq of
clauses such that the final clause Cq is the empty clause ∨∅, and each Ci is either in S or is
the resolvant of earlier clauses in the sequence.

Example: Let S = {(P ∨Q), (Q̄∨R), (P̄ ∨ S), (P̄ ∨ S̄), R̄}. Then a resolution refutation of
S is the sequence

(P ∨Q), (Q̄ ∨R), (P ∨R), (P̄ ∨ S), (P̄ ∨ S̄), P̄ , R, R̄,∨∅

It is helpful to write this refutation in tree form, where the parents of a resolvant are the
two clauses forming the resolvant.

RES Soundness Theorem: If a set S of clauses has a resolution refutation, then S is
unsatisfiable.

Proof: Let C1, C2, ..., Cq be a resolution refutation of S. Using the Resolvant Soundness
Principle above, and Transitivity of Logical Consequence (page 3), it follows by induction
on i that every clause Ci is a logical consequence of S. In particular, the empty clause Cq is
a logical consequence of S. But ∨∅ is unsatisfiable. Hence no truth assignment can satisfy
S. �

RES Completeness Theorem: Every unsatisfiable set of clauses has a resolution refuta-
tion.

Proof: We will prove this for finite sets S of clauses, although by the Propositional Com-
pactness Theorem (page 14) it follows also that every unsatisfiable infinite set S of clauses
has a finite resolution refutation.

To prove the theorem, we outline a procedure which can be used in practice to generate a
resolution refutation of S if S is unsatisfiable, or to find a satisfying assignment for S if S is
satisfiable. The procedure maintains a set S ′ ⊇ S of clauses which are arranged in a sequence
forming a partial resolution refutation of S (i.e. a sequence of clauses each of which is either
in S or is a resolvant of earlier clauses in the sequence). The procedure also maintains a

8

stack `1, `2, ..., `k of literals representing a partial truth assignment to the atoms of S. This
partial assignment τ makes each literal `j on the stack true, and it has the property that no
clause in S ′ is falsified by τ . (I.e. every clause in S ′ has at least one literal not falsified by
τ .)

1. If S includes the empty clause ∨∅, then the resolution refutation consists simply of ∨∅.
Otherwise, initialize S ′ = S and initialize the stack of literals to be empty.

2. The general step is as follows. If the partial assignment τ satisfies every clause in S,
then output τ and halt. Otherwise select a clause C in S which is not satisfied by τ , and a
literal ` in C which is not falsified by τ . Push ` onto the stack, and let τ ′ be the resulting
extension of τ (so τ ′ makes ` true). If τ ′ does not falsify any clause in S ′, then go to step 2
with τ ← τ ′.

3. Otherwise suppose that τ ′ falsifies a clause C ′ in S ′. Then replace ` on the stack by ¯̀,
and let τ ′′ be the resulting partial truth assignment (so τ ′′ falsifies `). If τ ′′ does not falsify
any clause in S ′, then go to step 2 with τ ← τ ′′.

4. Otherwise suppose that τ ′′ falsifies the clause C ′′ in S ′. In this case the clauses C ′ and
C ′′ can be resolved, forming a resolvant R which eliminates the literals ` and ¯̀, and such
that R is falsified by the original truth assignment τ from step 2 (and hence does not occur
in S ′). If R is the empty clause, then output the resolution refutation S ′ ∪ {R} and halt.
Otherwise pop the stack until the first point at which R is not falsified. Go to step 2 with
S ′ ← S ′ ∪ {R}.

To complete the proof, we need only show that the procedure always halts, since all halting
steps end either with a satisfying assignment (step 2) or a resolution refutation (step 4).
To see that the procedure halts, simply note that each execution of the general step results
either in adding a new distinct literal to the stack, or adding a new clause to the list S ′.
There are only finitely many literals, so eventually a new clause must be added to S ′, and
there are only finitely many distinct clauses that can be formed from the literals, so if no
satisfying assignment is found, eventually the empty clause must be added to S ′. �

An important theorem in proof complexity states that there are arbitrarily large unsatisfiable
clause sets S whose minimum resolution refutation contains a number of clauses exponential
in the number of clauses in S. From this it can be shown that most programs used in practice
for satisfiability testing require exponential time, in the worst case.

Gentzen’s Proof System PK

We now present the system PK based on the very elegant sequent calculus, introduced by
Gerhard Gentzen in 1935 (see [Buss], section 1.2.1).

In the propositional sequent calculus system PK, each line in a proof is a sequent of the
form

S = A1, ..., Ak → B1, ..., B` (1)

where → is a new symbol (not to be confused with ⊃), and A1, ..., Ak and B1, ..., B` are

9

sequences of formulas called cedents. (Here k and ` cannot both be 0.) We call the cedent
A1, ..., Ak the antecedent and B1, ..., B` the succedent.

Semantics of Sequents

The semantics of sequents is given as follows. We say that a truth assignment τ satisfies
the sequent S in (1) iff either τ falsifies some Ai or τ satisfies some Bi. Thus the sequent is
equivalent to the formula

AS = (A1 ∧ A2 ∧ ... ∧ Ak) ⊃ (B1 ∨B2 ∨ ... ∨B`) (2)

except if k = 0 then AS is simply

(B1 ∨B2 ∨ ... ∨B`)

and if ` = 0 then AS is simply
¬(A1 ∧ A2 ∧ ... ∧ Ak)

(In other words, the conjunction of the A’s implies the disjunction of the B’s.) In the cases in
which the antecedent or succedent is empty, we see that the sequent→ A is equivalent to the
formula A, and A→ is equivalent to ¬A, and just → (with both antecedent and succedent
empty) is false (unsatisfiable). We say that a sequent is valid if it is true under all truth
assignments (which is the same as saying that its corresponding formula AS is a tautology).
Similarly we can define the notion of logical consequence for sequents, by referring to the
corresponding formulas.

Examples: The following are valid sequents, for any formulas A,B:

A→ A
→ A,¬A
A,¬A→
→ A ∨ ¬A
A, (A ⊃ B)→ B

A formal proof (or just proof) in the propositional sequent calculus PK is a finite rooted
tree in which the nodes are (labeled with) sequents. The sequent at the root (written at the
bottom) is what is being proved, and is called the endsequent. The sequents at the leaves,
written at the top, are logical axioms, and must be of the form A→ A, where A is a formula.
Each sequent other than the logical axioms must follow from its parent sequent(s) by one of
the following rules of inference. For each rule, the sequent on the bottom follows from the
sequent on the top. Here Γ and ∆ denote finite sequences (possibly empty) of formulas, and
A and B denote formulas.

weakening rules

left
Γ→ ∆

A,Γ→ ∆
right

Γ→ ∆

Γ→ ∆, A

exchange rules

left
Γ1, A,B,Γ2 → ∆

Γ1, B,A,Γ2 → ∆
right

Γ→ ∆1, A,B,∆2

Γ→ ∆1, B,A,∆2

10

contraction rules

left
Γ, A,A→ ∆

Γ, A→ ∆
right

Γ→ ∆, A,A

Γ→ ∆, A

¬ introduction rules

left
Γ→ ∆, A

¬A,Γ→ ∆
right

A,Γ→ ∆

Γ→ ∆,¬A

∧ introduction rules

left
A,B,Γ→ ∆

(A ∧B),Γ→ ∆
right

Γ→ ∆, A Γ→ ∆, B

Γ→ ∆, (A ∧B)

∨ introduction rules

left
A,Γ→ ∆ B,Γ→ ∆

(A ∨B),Γ→ ∆
right

Γ→ ∆, A,B

Γ→ ∆, (A ∨B)

cut rule
Γ→ ∆, A A,Γ→ ∆

Γ→ ∆

The formula A in the cut rule is called the cut formula.

Note that there is one left introduction rule and one right introduction rule for each of the
three logical connectives ∧,∨,¬. Further, these rules seem to be the simplest possible, given
that the fact that for each introduction rule the bottom sequent is valid iff all top sequents
are valid.

Definition: A PK proof of a formula A is a PK proof of → A.

Exercise 5 Write down each of the six introduction rules from memory.

Sequent Soundness Principle: For each PK rule, the sequent on the bottom is a logical
consequence of the sequent(s) on the top.

Proof: EXERCISE

Note that repeated use of the exchange rules allows us to execute an arbitrary reordering of
the formulas in the antecedent or succedent of a sequent. In presenting a proof in the system
PK, we will usually omit mention of the steps requiring the exchange rules, but of course
they are there.

As an example, we give a PK proof of one of DeMorgan’s laws:

¬(P ∧Q)→ ¬P ∨ ¬Q

11

To find this (or any) proof, it is a good idea to start with the conclusion at the bottom, and
work up by removing the connectives one at a time, outermost first, by using the introduction
rules in reverse. This can be continued until some atom P occurs on both the left and
right side of a sequent. Then this sequent can be derived from the axiom P → P using
weakenings and exchanges. The cut and contraction rules are not necessary, and weakenings
are only needed immediately below axioms. (The cut rule can be used to shorten proofs,
and contraction will be needed later for the predicate calculus.)

P → P
(weakening)

P → P,¬Q
(¬ right)

→ P,¬P,¬Q

Q→ Q
(weakening)

Q→ Q,¬P
(¬ right)

→ Q,¬P,¬Q
(∧ right)

→ P ∧Q,¬P,¬Q
(∨ right)

→ P ∧Q,¬P ∨ ¬Q
(¬ left)

¬(P ∧Q)→ ¬P ∨ ¬Q

Exercise 6 Give PK proofs for each of the following valid sequents:

¬P ∨ ¬Q→ ¬(P ∧Q)
¬(P ∨Q)→ ¬P ∧ ¬Q
¬P ∧ ¬Q→ ¬(P ∨Q)

Exercise 7 Show that the contraction rules can be derived from the cut rule (with weakenings
and exchanges).

Exercise 8 Suppose that we allowed ⊃ as a primitive connective, rather than one introduced
by definition. Give the appropriate left and right introduction rules for ⊃.

Now we prove that PK is both sound and complete. That is, a propositional sequent is
provable in PK iff it is valid.

PK Soundness Theorem: Every sequent provable in PK is valid.

Proof: We show that the endsequent in every PK proof is valid, by induction on the
number of sequents in the proof. For the base case, the proof is a single line; an axiom
A→ A. This is obviously valid. For the induction step, one need only verify for each rule, if
all top sequents are valid, then the bottom sequent is valid. This follows from the Sequent
Soundness Principle above. �

Cut-free proofs A PK proof is cut-free if it does not use the cut rule. The following is a
useful property of cut-free proofs.

Subformula Property: Every formula in every sequent in a cut-free PK proof is a sub-
formula of a formula in the endsequent.

12

This principle is proved by a simple induction on the length of cut-free PK proofs, by
observing that for every PK rule except cut, every formula on the top is a subformula of
some formula on the bottom. In other words, once a formula occurs in a PK proof, there is
no way to get rid of it except by using the cut rule.

In fact, the cut rule is not necessary for proving that a formula is valid. However the cut rule
can shorten the proof of validity. Also, as we shall see, the cut rule is sometimes necessary
for showing that a formula is a logical consequence of other formulas.

It turns out that the contraction rule is not necessary either (although it is necessary in the
system LK for the predicate calculus).

PK Completeness Theorem: Every valid propositional sequent has a cut-free PK proof
which does not use the contraction rule.

Proof: The idea is discussed in the example proof above of DeMorgan’s laws. We need to
use the inversion principle.

Inversion Principle: For each PK rule except weakening, if the bottom sequent is valid,
then all top sequents are valid.

This principle is easily verified by inspecting each of the ten rules in question.

Now for the completeness theorem: We show that every valid sequent Γ → ∆ has a PK
proof, by induction on the total number of logical connectives ∧,∨,¬ occurring in Γ → ∆.
For the base case, every formula in Γ and ∆ is an atom, and since the sequent is valid, some
atom P must occur in both Γ and ∆. Hence Γ→ ∆ can be derived from the axiom P → P
by weakenings and exchanges.

For the induction step, let A be any nonatomic formula (i.e. A is not an atom) in Γ or
∆. Then by the definition of propositional formula A must have one of the forms (B ∧ C),
(B ∨ C), or ¬B. Thus Γ → ∆ can be derived from ∧ introduction, ∨ introduction, or ¬
introduction, respectively, using either the left case or the right case, depending on whether
A is in Γ or ∆, and also using exhcanges, but no weakenings. In each case, each top sequent
of the rule will have at least one fewer connective than Γ → ∆, and the sequent is valid by
the inversion principle. Hence each top sequent has a PK proof, by the induction hypothesis.
�

Remark: The soundness and completeness theorems relate the semantic notion of validity
to the syntactic notion of proof.

We generalize the (semantic) definition of logical consequence from formulas to sequents in
the obvious way: A sequent S is a logical consequence of a set Φ of sequents iff every truth
assignment τ that satisfies Φ also satisfies S.

We generalize the (syntactic) definition of PK proof of a sequent S to a PK proof of S from
a set Φ sequents (also called a PK − Φ proof) by allowing sequents in Φ to be leaves (or
nonlogical axioms) in the proof tree, in addition to the logical axioms A→ A. The PK −Φ

13

proof must always be finite, even when Φ is infinite. (Of course not all members of Φ need
occur in the proof.)

It turns out that soundness and completeness generalize to this setting.

Derivational Soundness and Completeness Theorem: A sequent S is a logical conse-
quence of a set Φ of sequents iff S has a (finite) PK − Φ proof.

A remarkable aspect of completeness is that a finite proof exists even in case Φ is an infinite
set. This is because of the compactness theorem (below) which implies that if S is a logical
consequence of Φ, then S is a logical consequence of some finite subset of Φ.

In general, to prove S from Φ, the cut rule is required. In particular, there is no cut-free
PK proof of → P from → P ∧ Q. This follows from the subformula property for cut-free
PK −Φ proofs (see page 12 for the case when Φ = ∅): Every formula in every sequent in a
cut-free PK − Φ proof is a subformula of a formula in the endsequent.

Proof of Derivational Soundness and Completeness:

Derivational soundness is proved in the same way as simple soundness: by induction on the
number of sequents in the PK proof. In the previous proof we observed that if the top
sequents of a rule are valid, then the bottom sequent is valid. Now we observe that the
bottom sequent is a logical consequence of the top sequent(s).

To prove completeness, by the Compactness Theorem below it suffices to consider the case
in which Φ = {S1, . . . , Sk} is a finite set of sequents. We use the PK Completeness Theorem
(page 13) and the formula AS giving the semantics of a sequent S (see (2) on page 10). Recall
that the formula AS is logically equivalent to the sequent S (i.e. AS and S get the same
truth values for every truth assignment τ). From this, assuming that the sequent Γ→ ∆ is
a logical consequence of the set {S1, . . . , Sk} of sequents, it follows that the sequent

Γ, AS1 , . . . , ASk
→ ∆ (3)

is valid. Hence by the PK Completeness Theorem, (3) has a PK proof. From the Exercise
below, it follows that for each i, 1 ≤ i ≤ k, the sequent → ASi

has a PK derivation from
the sequent Si. Finally, the sequent Γ→ ∆ can be derived from (3) and → AS1 , . . . ,→ ASk

using k cuts (together with weakenings and exchanges). �

Exercise 9 For every sequent S, there is a cut-free PK − {S} proof of AS.

Anchored Proofs (This notion is not needed for the rest of the course.) Note that in
the above proof of derivational completeness, the only cut formulas needed are the sequent
semantic formulas ASi

, where the sequent Si is in the hypothesis set Φ. For some applications
it is important to know that in fact the only cut formulas needed are those that occur as
formulas in the hypotheses Si. (Here the formulas that occur in the sequent

A1, . . . , Ak → B1 . . . B`

14

are the formulas A1, . . . , Ak, B1, . . . , B`.)

We say that a PK −Φ proof π is anchored if every cut formula in π is a formula that occurs
in one of the sequents in Φ.

Anchored Completeness Theorem: If a sequent S is a logical consequence of a set Φ of
sequents, then S has an anchored PK − Φ proof.

We illustrate the anchored completeness theorem by proving the special case in which Φ
consists of the single sequent A → B. Assume that the sequent Γ → ∆ is a logical conse-
quence of A→ B. Then both of the sequents Γ→ ∆, A and B,A,Γ→ ∆ are valid (why?).
Hence by the earlier completeness theorem, they have PK proofs π1 and π2. We can use
these proofs to get a proof of Γ → ∆ from A → B as shown below, where the double line
indicates several rules have been applied.

··· π1

Γ→ ∆, A

A→ B
========== (weakenings, exchanges)
A,Γ→ ∆, B

··· π2

B,A,Γ→ ∆
(cut)

A,Γ→ ∆
(cut)

Γ→ ∆

Next consider the case in which Φ has the form {→ A1,→ A2, ...,→ Ak} for some set
{A1, ..., Ak} of formulas. Assume that Γ → ∆ is a logical consequence of Φ in this case.
Then the sequent

A1, A2, ..., Ak,Γ→ ∆

is valid (why?), and hence has a PK proof π. Now we can use the assumptions Φ and the
cut rule to successively remove A1, A2, ..., Ak from the above sequent to conclude Γ → ∆.
For example, A1 is removed as follows:

→ A1
================= (weakenings, exchanges)
A2, ..., Ak,Γ→ ∆, A1

··· π
A1, A2, ..., Ak,Γ→ ∆

(cut)
A2, ..., Ak,Γ→ ∆

Exercise 10 Prove the anchored completeness theorem for the more general case in which
Φ is any finite set of sequents.

Propositional Compactness Theorem: We state three different forms of this result. All
three are equivalent.

Form 1: If Φ is an unsatisfiable set of propositional formulas, then some finite subset of Φ
is unsatisfiable.

Form 2: If a formula A is a logical consequence of a set Φ of formulas, then A is a logical
consequence of some finite subset of Φ.

15

Form 3: If every finite subset of a set Φ of formulas is satisfiable, then Φ is satisfiable.

Exercise 11 Prove the equivalence of the three forms. (Note that Form 3 is the contrapos-
itive of Form 1.)

Proof of Form 1: Let Φ be an unsatisfiable set of formulas. We assume that the set of atoms
occurring in formulas in Φ is finite or countable. In other words, there is an infinite list
P1, P2, P3, ... of distinct atoms which includes all atoms occurring in Φ. The exercise below
concerns the general case. Organize the set of truth valuations into an infinite rooted binary
tree B. Each node except the root is labelled with a literal Pi or ¬Pi. The two children of
the root are labelled P1 and ¬P1, indicating that P1 is assigned T or F , respectively. The
two children of each of these nodes are labelled P2 and ¬P2, respectively, indicating the truth
value of P2. Thus each infinite branch in the tree represents a complete truth assignment,
and each path from the root to a node represents a truth assignment to the atoms P1, ..., Pi,
for some i.

Now for every node ν in the tree B, prune the tree at ν (i.e. remove the subtree rooted at
ν, keeping ν itself) if the partial truth assignment τν represented by the path to ν falsifies
some formula Aν in Φ, where all atoms in Aν get values from τν . Let B′ be the resulting
pruned tree. Since Φ is unsatisfiable, every path from the root in B′ must end after finitely
many steps in some leaf ν labelled with a formula Aν in Φ. It follows from König’s Lemma
below that B′ is finite. Let Φ′ be the finite subset of Φ consisting of all formulas Aν labelling
the leaves of B′. Since every truth assignment τ determines a path in B′ which ends in a
leaf Aν falsified by τ , it follows that Φ′ is unsatisfiable. �

König’s Lemma: Suppose T is a rooted tree in which every node has only finitely many
children. If every branch in T is finite, then T is finite.

Proof: We prove the contrapositive: If T is infinite (but every node has only finitely many
children) then T has an infinite branch. We can define an infinite path in T as follows: Start
at the root. Since T is infinite but the root has only finitely many children, the subtree
rooted at one of these children must be infinite. Choose such a child as the second node in
the branch, and continue. �

Exercise 12 (For those with some knowledge of set theory or point set topology) The above
proof of the propositional compactness theorem only works when the set of atoms is countable,
but the result still holds even when Φ is an uncountable set with an uncountable set A of
atoms. Complete each of the two proof outlines below.

(a) Prove Form 3 using Zorn’s Lemma as follows: Call a set Ψ of formulas finitely satisfiable
if every finite subset of Ψ is satisfiable. Assume that Φ is finitely satisfiable. Let C be the
class of all finitely satisfiable sets Ψ ⊇ Φ of propositional formulas using atoms in Φ. Order
these sets Ψ by inclusion. Show that the union of any chain of sets in C is again in the

16

class C. Hence by Zorn’s Lemma, C has a maximal element Ψ0. Show that Ψ0 has a unique
satisfying assignment, and hence Φ is satisfiable.

(b) Show that Form 1 follows from Tychonoff’s Theorem: The product of compact topological
spaces is compact. The set of all truth assignments to the atom set A can be given the
product topology, when viewed as the product for all atoms P in A of the two-point space
{T, F} of assignments to P , with the discrete topology. By Tychonoff’s Theorem, this space
of assignments is compact. Show that for each formula A, the set of assignments falsifying
A is open. Thus Form 1 follows from the definition of compact: every open cover has a finite
subcover.

Exercise 13 A tile is a quadruple T = 〈a, b, c, d〉, where a, b, c, d represent the colours as-
signed to the top, bottom, left, and right, of T , respectively. If R is a region of the plane
consisting of a set of unit squares whose corners are integer lattice points, then a tiling of R
using a set S of tiles is an assignment of a tile from S to each unit square in R, such that
colours agree on adjacent tiles. Formally, we represent a unit square by the co-ordinates of
its lower left corner. Thus a tiling is a map f from certain pairs (i, j) to tiles in S such that
if f(i, j) = 〈a, b, c, d〉 and f(i + 1, j) = 〈a′, b′, c′, d′〉, then d = c′, and if f(i, j) = 〈a, b, c, d〉
and f(i, j + 1) = 〈a′, b′, c′, d′〉 then a = b′.

(a) Suppose Rn is the n × n square whose lower left corner is at the origin. Suppose that
S = {T1, ..., T`} is a set of tiles, with Tk = 〈ak, bk, ck, dk〉, 1 ≤ k ≤ `. Show how to construct a
propositional formula An which is satisfiable iff there is a correct tiling of Rn using S. Your
formula should have an atom P k

ij for each tile Tk and each square (i, j) in the region, which
asserts (intuitively) that square (i, j) is assigned tile Tk. Every correct tiling of Rn using S
should correspond to a truth assignment satisfying An.

(b) Use part (a) and the propositional compactness theorem to conclude that if the finite set
S of tiles can be used to tile each n × n square Rn, then S can be used to tile the entire
upper-right quadrant of the plane.

Exercise 14 Let G = (V,E) be an undirected graph with vertex set V and edge set E. A
3-coloring of G is a map χ : V → {R,B, Y } such that if {x, y} ∈ E then χ(x) 6= χ(y). (Here
R,B, Y represent the colors red, blue, yellow.)

(a) Suppose n > 1 and let Vn = {0, 1, ..., n−1} and let Gn = (Vn, En) be an undirected graph
with vertex set Vn. For each i, 0 ≤ i < n let Ri, Bi, Yi be propositional variables. (Intuitively
Ri assert that node i is colored red, and Bi, Yi assert it is colored blue, yellow, respectively.

Give a propositional formula An using the variables {Ri, Bi, Yi | 0 ≤ i < n} such that An is
satisfiable iff Gn has a 3-coloring. Do this in such a way that An can be computed efficiently
from Gn (e.g. don’t define An to be R1 if Gn has a 3-coloring and (R1 ∧ ¬R1) otherwise).

(b) Let V = N = {0, 1, 2, ...} and let G = (V,E) be an undirected graph on the infinite vertex
set V . For n > 1 let Gn be the induced subgraph of G on the vertex set Vn = {0, 1, ..., n− 1}.
Prove that if Gn has a 3-coloring for all n > 1 then G has a 3-coloring.

17

