Announce ments

* NEW DATES*

- Problem Set 2 : Due MON NOV 15
- Test 2: MON NOV 22
- Problem Set 3: Due Mon Dec 13

TODAY :

- · Corollaries of completeness
- · Dealing with Equality
- · Theories of Arithmetic

Corollaries of completeness

Corollaries of completeness

(2) First Order compactness Theorem. An infinite set of first order sentences @ 1s unsatisfiable it and only it some finite subset of $\overline{\mathfrak{G}}$ is unsatisfiable Proof Let A be the empty sequent (or any unsatisfiable formula) Dunsatufiable means DEA. Thus (by completeness) there is a \$-LK proof of A proof. Thus there is a finite subset $\overline{\Phi}'$ of $\overline{\Phi}$ such that there is a $\overline{\Phi}'$ -LK proof $\overline{\Phi}$ A : • • is unsatisfiable. (other direction is easy)

1. The sequent
$$\neg A$$
 is invalid, $\overline{\Phi} = empty$

Dealing with Equality

So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality Dealing with Equality

So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality

Definition A weak L-structure is an Z-structure where = can be any binary predicate Question: Can we define a finite set of sentences & that defines equaliby? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equaliby?)

Dealing with Equality

Question: Can we define a finite set of sentences & that defines equality? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equality?)

But this is the only counterexample. There is a natural, finite set of axioms that characterizes true equality (up to isomorphism)

Dealing with Equality
Equality Axioms for
$$\mathcal{A}$$
 (\mathcal{E}_{X})
= is (E1. $\forall x(x=x)$)
equiv
E2. $\forall x \forall y (x=y > y=x)$
equiv
E3. $\forall x \forall y \forall z ((x=y \land y=z) > x=z)$
(E4. $\forall x ... \forall x n \forall y_1 ... \forall y_n (x=y_1 \land ... \land x_n=y_n) > f x_1 ... x_n = f y_1 ... y_n$
for all n-ary Eunstein symbols, and for all $n \ge 1$
 \mathcal{E}_{2} . $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
(E4. $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
 \mathcal{E}_{2} . $\forall x_1 ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n)$

equivalence relation preservet by functions and predicates Equality Theorem

Theorem Let & be a set of L-sentences & is satisfiable iff & u & is satisfied by some weak L-structure.

Proof straightforward (see Lecture Notes)

Add these axioms for all terms u,t, u,..,t,...

LI

$$f = u \longrightarrow u = t$$

L3 $E = u, u = v \longrightarrow t = v$
L4 $E_1 = u_1, \dots, t_n = u_n \longrightarrow f = t_1 \dots t_n = f = u_1 \dots u_n$
L5 $E_1 = u_1, \dots, t_n = u_n, P = t_1 \dots t_n \longrightarrow P = u_1 \dots u_n$
Now an LK-& proof of $\rightarrow A$ means an
LK proof of A from a and from above axioms

We will soon see that TA is Not decidable. On the other hand, restricted systems of TA are decidable (Ls, L+)

Theories

Note: JN Lecture notes this is not defined until p.75 but it is important enough that we introduce it Now.

Theories

Note: JN Lecture notes this is not defined until p.75 but it is important enough that up introduce it Now. Definition A theory (over 2) is a set 2 of sentences closed under logical consequence. (ZEA then AGE) We can specify a theory by a finite or countable set Q sentences Ψ -- the theory corresponding to Ψ - is $\Xi A \mid \Psi \models A$? Notation Za theory ZFA means AEZ Definition For a Language L, Φ_o^{d} -is the set of all sentences over L

Definition Ξ is consistent if and only if $\Xi \neq \overline{\Phi}_{o}$ (If $\Xi = \overline{\Phi}_{o}$ then Ξ contains $A + \tau A$) conversely if Ξ contains $A + \tau A$ then Ξ contains all of $\overline{\Phi}_{o}$

Definition Z is consistent if and only if $\Xi \neq \oint_{o}$ Ξ^{-is} complete iff Ξ^{-is} consistent and for all sentences A, either ZMA or ZMA

Definition Ξ is consistent if and only if $\Xi \neq \overline{\phi}$ Z is complete iff Z is consistent and for all sentences A, either ZMA or ZMA Example $f_A = \{0, s, t, \cdot\} = \}$ TA = all sentences over LA that are true in IN is consistent and complete ひんてい) ひかみ うべい)

R(a)

😑 Yu Qlu)

Definition Ξ is consistent if and only if $\Xi \neq \overline{\Phi}$ Z is complete iff Z is consistent and for all sentences A, either ZMA or ZMA A theory Z over d_A is sound (wrt IN) Definition iff $Z \leq TA$

Subsystems of True Anthmetic
Theory of Successor (0, s; =)
Presburger Anthmetic (0, s, +; =)
Peano Arithmetic (0, s, +; =)
Peano Arithmetic (0, s, +; =)
Defn
$$Z_s = \{0, s; =\}$$
 Language of successor
The standard model for Z_s , M_s :
 $M = (N, 0 \text{ and } s \text{ have usual meaning (s(x)=x+1)})$
Let Th(s) (theory of successor) be the set of all
sentences of Z_s that are true in M_s

Th(s): There is a simple (infinde but countable)
complete set of axians for th(s),
$$\Psi_s$$

 $\Psi_s: (51) \forall x (5x \neq 0)$
 $(52) \forall x \forall y (5x \neq 3y) = x = y)$
 $(53) \forall x (x = 0 \ y = y (x = 5y))$
 $(53) \forall x (5x \neq x)$
 $(55) \forall x (55x \neq x))$
 $(56) \forall y (555 \times 2x)$
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)
 (57)

Models for ψ_s : A model for ψ_s - is a model/structure over L, that satisfies all formulas in ye e isomorphic to IN 50 550 ()up to renaming 0 50 550 $\binom{n}{2}$ IN plus plus a copy of integens

3 generalizing 3, models contain one wyg Q W, plus any number g copus (isopophic to) the integers Note instract all axioms 54,55,56,... we wild have additional models inthe Coops

0 50 550 & Cycles plus

Theorem Us is complete and consistent (proof omitted)

Therefore although ψ_s has both the . Standard model IN as well as wonstandard models all models M of ψ_s have the same set of true sentences.

Theorem Us is complete and consistent (proof omitted)

Therefore although ψ_s has both the . Standard model IN as well as wonstandard models all models of ψ_s have the same set of true sentences.

We'll see later that when a set of sentences (such as This)) has a Nice (enumerable) axiomatization, then This) - is decidable.

- Has a cauntable set of axioms

- We think it is consistent

- Has standard model in also has not tame nonstandard models

 $A(o) \land (\forall \land (\land \land)) \land (s_{2})) \supset \forall_{X} \land (x)$

BACK TO TA (TRUE ARITHMETIC)

Theorem 1A has a nonscandara mos