computability, If

Turing Machines "on Computable Numbers, with an application to the Entscheidungsproblem"

1936

$1912-1954$

Turing Machines:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{1}, B,\left\{q_{2}\right\}\right)
$$

Turing Machines "On Computable Numbers, with an application to the Entscheidung sproblem"
 1936

Church-Turing Thesis
A furction/predicate is computable/ realizable in physical world \Rightarrow it is computable by a TM

$$
1912-1954
$$

Notation
$\{x\}=$ Turing machine M such that $\# M=x$
$\{x\}_{1}=$ the unary function computed by x
$\{x\}_{n}=$ the n-arr function computed by x (can generalize earlier so M takes n inputs instead of 1)

Today
What is computable and what isn't? We will mostly focus on unary relations or Languages - $L \leq\{0,1\}^{*}$

Tall finite length strings over $\{0,1\}$

$$
\begin{aligned}
\{q 1\}^{2 \infty}= & \text { all binary strings } \\
& \text { of firikic length } \\
= & \{5,0,1,0000,10,1, \ldots \ldots\}
\end{aligned}
$$

Definition Let M be a $T M$, $\Sigma=\{0,1\}$ $\mathscr{L}(M) \subseteq\{0,1\}^{*}$ is the set of all (finite-length)
 strings $x \in\{0,1\}^{*}$ such that $M(x)$ halts and outputs 1 the Language accepted by M

Recursive / RE Sets
A language $L \leq\{0,1\}^{*}$ is recursively enumerable if there exists a TM M such that $\mathcal{L}(M)=L$

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow M$ on x halts and outputs " 1 "
$x \notin L \Rightarrow M$ on x halts and does not output 1 or M does not halt on x

Recursive / RE Sets
A language $L \leq\{0,1\}^{*}$ is recursively enumerable if there exists a TM M such that $\mathcal{L}(M)=L$

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow M$ on x halts and outputs " 1 "
$x \notin L \Rightarrow M$ on x halts and does not output 1 or M does not halt on x
recursively enumerable (re) also called semidecidable, partial computable

Recursive / RE sets
A language $L \leq\{0,1\}^{*}$ is recursive if there exists a TM M such that $\mathscr{L}(M)=L$ and M always halts

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow$ Mon x halts and outputs " 1 "
$x \not L \Rightarrow M$ on x halts and does Not output 1 (without loss of generality, $x \times L \Rightarrow M(x)$ halts + outputs " 0 ")

Recursive / RE sets
A language $L \leq\{0,1\}^{*}$ is recursive if there exists a TM M such that $\mathscr{L}(M)=L$ and M always halts

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow$ Mon x halts and outputs " 1 "
$x \not L \Rightarrow M$ on x halts and does Not output 1 (without loss of generality,

$$
x \times L \Rightarrow M(x) \text { halts + outputs " } 0 \text { ") }
$$

recursive also called decidable, computable.

Recursive / RE Sets
A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ (or $f: \mathbb{N}^{n} \rightarrow N$) is total computable if there exists a TM M such that $\forall x \in\{0,1\}^{x}$ $M(x)$ halts and outputs $f(x)$. all $L \leqslant\{a \mid\}^{e}$

CLOSURE PROPERTIES
(1) L recursive \Rightarrow L r.e.
(2) Total computable functions closed under composition: f, g computable $\Rightarrow f \circ g=f(g(x))$ is computable

CLOSURE PROPERTIES
(1) L recursive \Rightarrow L r.e.
(2) Total computable functions closed under composition: f, g computable $\Rightarrow f \circ g=f(g(x))$ is computable
(3) Closure of recursive languages under $0,0,7$: L_{1}, L_{2} recursive $\Rightarrow L_{1} \cup L_{2}, L_{1} \cap L_{2}, \neg L_{1}, L_{2}$ are recursive

CLOSURE PROPERTIES
(1) L recursive $\Rightarrow L$ r.e.
(2) Total computable functions closed under composition: f, g computable $\Rightarrow f \circ g=f(g(x))$ is computable
(3) Closure of recursive languages under $0,0,7$:

$$
L_{1}, L_{2} \text { recursive } \Rightarrow L_{1} \cup L_{2}, L_{1} \cap L_{2}, \neg L_{1}, L_{2} \text { are recursive }
$$

(3) Closure of re. Languages under n, u

$$
L_{1}, L_{2} \text { re } \Rightarrow L U L_{2}, L_{1} \cap L_{2} \text { recursive }
$$

use dovetailing re for $i=1, \ldots$. run M_{1} for i step, M_{z} for i steps

CLOSURE PROPERTIES
(1) L recursive $\Rightarrow L$ r.e.
(2) Total computable functions closed under composition: f, g computable $\Rightarrow f \circ g=f(g(x))$ is computable
(3) Closure of recursive languages under $0,0,7$:

$$
L_{1}, L_{2} \text { recursive } \Rightarrow L_{1} \cup L_{2}, L_{1} \cap L_{2}, \neg L_{1}, L_{2} \text { are recursive }
$$

(3) Closure of re. Languages under n, u L_{1}, L_{2} re. $\Rightarrow h U L_{2}, L_{1} n L_{2}$ recursive
use dovetailing re for $i=1, \ldots$. run M_{1} for i steps, M_{z} for i steps

CLOSURE PROPERTIES, cont'd
(4) L r.e., and L re. $\Rightarrow L$ is recursive

$$
\mathcal{R}_{\{x \mid x \notin L\}}
$$

* Note: often $L \subseteq\{0,1\}^{*}$ is a set of encodings. Example $L=\{x \mid\{x\}$, acepts input "III" $\}$ then we usually think of L as $\{x \mid\{x\}$, does not accept 111$\}$ although technically

$$
\bar{L}=\{x \mid x \text { is not a legal en coding or }\{x\} \text {, does notaccept } 111\}
$$

$$
\begin{aligned}
& L \leq\{0,1\}^{*} \quad\left(\begin{array}{rl}
\{0,1\}^{*}= & \text { set of all strings our } 0 / 1 \\
& \text { of finite length } \\
\{E, 0,1,00,0,10,11, \ldots . .\}
\end{array}\right) \\
& \bar{L}=\left\{y \in\{0,1\}^{*} \mid y \in L\right\}
\end{aligned}
$$

CLOSURE PROPERTIES, cont'd
(4) L r.e., and L re. $\Rightarrow L$ is recursive

Proof: (Dovetailing)
Let M, be a $T M$ st $\mathcal{L}(M)=L$,
M_{2} be a $T M$ st $\mathcal{Z}(M)=\bar{L}$
New TM M on x :
For $i=1,2,3, \ldots$
Run M_{1} on x for i steps
if M_{1} accepts x halt + accept
Run $M_{2} M_{1} \times$ for i steps
it M_{2} accept s x, hat + reject

CLOSURE PROPERTIES, cont'd
(4) L re., and L r.e. $\Rightarrow L$ is recursive

Proof: (Dovetailing)
Let M, be a TM st $\mathcal{L}(M)=L$,

$$
M_{2} \text { be a TM st } \mathcal{Z}(M)=\bar{L}
$$

$\sim_{\text {Now }}^{\text {New }} \underbrace{M}_{i=1,2,3}$ on x :
Run M_{1} on x for i steps
if $M_{\text {, accepts }} x$ halt + accept
Run $M_{2} M_{1} \times$ for i steps

$$
\begin{aligned}
& M_{2} m_{x} \text { for ic steps } \\
& \text { it } M_{2} \text { accept } s x \text {, hat }+ \text { reject }
\end{aligned}
$$

- M on x eventually halts since x accepted by exactly one of M_{1}, M_{2}
- $x \in L \Rightarrow M_{1}$ accepts $x \Rightarrow M$ accepts x
- $x \propto L \Rightarrow M_{2}$ accepts $x \Rightarrow M$ halts and rejects x

Many Languages arent Recursiely Enumerable!
Intuition:
Every $T M \quad M$ maps uniquely to a string in $\{0,1\}^{*}$

$$
\{0,1\}^{k}=\{\varepsilon, 0,1,00,01,10,11,000,001, \ldots .\}
$$

so the $\neq 1$ of TM is countable, and therefore so are the re. Languages $L \subseteq\{0,1\}^{*}$
on the other hand, how large is the set of all languages?
ie. the set of all subsets of $\{0,1\}^{x}$
This set is uncountable! (So many more languages $\frac{\text { than re. Languages }}{}$)

Many Languages are Not r.e.
Proof : Diagonalization
main idea: There are many more Languages (subsets of $[0,1\}^{*}$) than there are $T M_{s}$. Proof very similar to Cantor's argument showing that there is no $1-1$ mapping from the Real numbers to the Natural numbers

Many Languages are Not re.
Proof: Diagonalization

- Fix an enumeration of all $T M_{s}$ with $\Sigma=\{0,1\}$ $\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}, \ldots$
- Make a z-way infinite (but countable) table rows correspond to $\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots$
columns correspond to enumeration of encoding of Turing machines x_{1}, x_{2}, \ldots
- Entry $(i, j)=0$ if $\left\{x_{j}\right\}$, accepts x_{j} 1 otherwise

Many Languages are Not re.

$$
D=\left\{x_{j} \mid\left\{x_{j}\right\}_{1} \text { does not accept } x_{j}\right\}
$$

Theorem D is not re.
Proof By construction: For all TMS M_{i},

$$
\left\{x_{i}\right\}\left(x_{i}\right) \neq D\left(x_{i}\right) \text { so } \mathcal{L}\left(M_{i}\right) \neq D
$$

\therefore D not re.

Using Reductions to show other (more Natural) Languages/functions are not computable/recursic/r.e.

High Level:
(1) Say we know L not recursive To show L_{2} not recursive, design a $T M M_{1}$ always halts $+\mathcal{L}\left(M_{1}\right)=L_{1}$, assuming a TM M_{2} that al maps halts $+\mathcal{L}\left(M_{2}\right)=L_{2}$
(2) suppose L, not re.

To show L_{2} not re., construct M_{1} st $\mathcal{L}\left(M_{1}\right)=L_{1}$ assuming a $T M M_{2}$ st $f\left(M_{2}\right)=L_{2}$

The Halting Problern is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
yellow language $=\{x \mid T M\{x\}$ accepts input $x\}$
HALT $\stackrel{d}{=}\{\langle x, y\rangle$ /TM $\{x\}$ halts on input $y\}$

Claim HALT, K are both r.e.
PF: simply run $\{x\}$ on y. Accept it simulation halts.

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Proof Let $L_{1}=D$. We know L_{1} is not re. Assume $L_{2}=K$ is recursive, + Let M_{2} always halt $+\mathcal{Z}\left(M_{2}\right)=L_{2}$ Construction of $T M M_{1}$, for D on input x :

Run M_{2} on x

- If M_{2} accepts x then

Run $\{x\}$ on x and output 1 iff $\{x\}(x) \neq 1$

- If M_{2} halts + does not accept x then output 1

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Proof Let $L_{1}=D$. We know L_{1} is not re. Assume $L_{2}=K$ is recursive, + Let M_{2} always halt $+\mathcal{Z}\left(M_{2}\right)=L_{2}$ Construction of $T M M$, for D on input x :

Run M_{2} on x

- If M_{2} accepts x then

Run $\{x\}$ on x and output 1 iff $\{x\}(x) \neq 1$

- If M_{2} halts + does not accept x then output 1
- M_{1}, halts on all x
- $x \in D \Rightarrow\{x\}(x) \neq 1 \Rightarrow M_{1}(x)=1$
- $x \neq D \Rightarrow\{x\}(x)=1 \Rightarrow \mu_{1}(x) \neq 1$

The Halting Problern is not Recursive

$$
K \stackrel{d}{=}\{x \mid T M\{x\} \text { halts on input } x\}
$$

Theorem K is not recursive
Theorem \bar{K} is not r.e.
K is re.
k re. and \bar{k} r.e. $\Rightarrow k$ recursive property (4)
$\therefore \bar{k}$ not re.

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Theorem \bar{K} is not r.e.
Theorem HALT is not recursive

* K is a special case of HALT + K not recursive
$\rightarrow L_{1}=K, L_{2}=H A L T$. Assume M_{2} always halts and accepts L_{2}. Construct M_{1} for L_{1}
\rightarrow M, on x:
Run M_{2} on $\langle x, x\rangle$. Accept iff μ_{2} accepts

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Theorem \bar{K} is not r.e.
Theorem HALT is not recursive

* K is a special case of HALT $+K$ not recursive
$\rightarrow L_{1}=K, L_{2}=H A L T$. Assume M_{2} always halts and accepts L_{2}. Construct M_{1} for L_{1}
\rightarrow M, on x:
Run M_{2} on $\langle x, x\rangle$. Accept iff μ_{2} accepts

Tips
(1.) Try obvious algorithms to see if you think Language is recursive, re, or Neither
(2.) To show L not re., sometimes it helps to work with L
(ie. if I re., I not recursive then L not rue.)
(3) get reduction in correct direction. many times constructed TM M_{1} will ignore its own input

SUMMARY SO FAR

1. We saw $D=\left\{x \mid\{x\}_{1}(x)\right.$ does not accept $\}$ is not re. by diagonalization
2. Using reductions we proved K, Halt are not recursive

Using Reductions to show other (more Natural) Languages/functions are not computable/recursic/r.e.

High Level:
(1) Say we know L not recursive To show L_{2} not recursive, design a $T M M_{1}$ always halts $+\mathcal{L}\left(M_{1}\right)=L_{1}$, assuming a TM M_{2} that al maps halts $+\mathcal{L}\left(M_{2}\right)=L_{2}$
(2) suppose L, not re.

To show L_{2} not re., construct M_{1} st $\mathcal{L}\left(M_{1}\right)=L_{1}$ assuming a $T M M_{2}$ st $f\left(M_{2}\right)=L_{2}$

The Halting Problern is not Recursive $K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$

$$
\text { HALT } \stackrel{d}{=}\{\langle x, y\rangle \mid T M\{x\} \text { halts on input } y\}
$$

Theorem. HALT, K are both r.e., Neither are recursive

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
If k recursive then D also recursive

Theorem Halt not recursive If Halt recursive then K recursive

Tips
(1.) Try obvious algorithms to see if you think Language is recursive, re, or Neither
(2.) To show L not re., sometimes it helps to work with L
(ie. if I re., I not recursive then L not rue.)
(3) get reduction in correct direction. many times constructed TM M_{1} will ignore its own input
$L=\{x \mid\{x\}$ accepts at least one input $\}$

Enumerate all string in $\{0,1\}^{*}$

$$
\begin{aligned}
& \{\varepsilon, 0,1,00,0,10,1, \infty 0, \ldots \\
& \uparrow|1| \\
& w_{1} w_{2} w_{3}
\end{aligned}
$$

Dovetail Procedure for L on input x :

$$
\text { For } i=1,33 \ldots \ldots
$$

$\left[\begin{array}{l}\text { For } j=1, \ldots i \\ \text { Simulate }\{x\}, n \quad w_{j} \text { for } i \text { steps }\end{array}\right.$
If any of the simulations accepts, AKLT a accept
$L=\{x \mid\{x\}$ accepts at least one input $\}$

- L is re. (Dovetailing)
- L' is not recursive

$$
L_{1}=K=\{y \mid\{y\}(y) \text { hales }\}
$$

Assume $L_{2}=L$ is recursive + Let M_{2} be $T M \mathcal{L}\left(M_{2}\right)=C$ and M_{2} always halts
M_{1} on input y :
construct encoding z aTM $\{z\}$ where
$\{z\}$ on input x : Ignores $x+$ runs $\& 1\}_{m} y$

Run $M_{2} m z$ and accept y iff $M_{2}(z)$ accepts
claim $\mathscr{L}\left(M_{1}\right)=K$ and μ_{1} always halts
$y \in K \Rightarrow\{y\}(y)$ halts $\Rightarrow\{z\}$ accepts all inputs $\Rightarrow M_{z}(z)=1 \Rightarrow M_{1}(y)=1$
$y * K \Rightarrow\{y\}(y)$ doers $\Rightarrow\{z\}$ aced's No input $\Rightarrow M_{2}(z) \neq 1 \Rightarrow M_{1}(y) \neq 1$
halt

Compreteness
A Language $A \leq\{0,1\}^{*}$ is r.e.-complete if
(1) A is r.e.
(2) $\forall B \leq\{01\}^{[,}$, if B is r.e. then $B \leqslant_{m} A$ A_{f} is computable
B reduces to A so if A is recurscle then B recursice

Compreteness
A set $A \subseteq \mathbb{N}$ is re.-complete if
(1) A is r.e.
(2) $\forall B \leq \mathbb{N}$, if B is r.e. then $B \leqslant_{m} A$
\exists computable function $f: \mathbb{N} \Rightarrow N$ such that $\forall x \quad f(x) \in A \Leftrightarrow x \in B$

N

Hilbert's $10^{\text {th }}$ Problem (1900)
A diophantivic equation is of the form $p(\vec{x})=0$ where p is a polynomial over variables X_{1}, \ldots, X_{n} with integer coefficients

Ex $3 x_{1}^{5} x_{2}^{3}+\left(x_{1}+1\right)^{8}-x_{7}^{10}=0$

$$
\mathcal{L}_{\text {DIOPH }}=\{\langle p\rangle \mid p \text { has a solution over } \mathbb{N}\}
$$

Theorem

$$
\mathcal{L}_{\text {DIopH }} \text { is r.e.-complete }
$$

An Equivalent characterization of RE Sets//Longuages

Let $\quad f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

An Equivalent characterization of RE sets

Let $\quad f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Rightarrow : Suppose f computable.
TM for R_{f} on input (x, y) :
Run TM computing f on x.
If it halts and outputs y then accept (x, y) Otherwise reject (x, y)

An Equivalent Characterization of RE Sets

Let $f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Leftarrow : Let R_{f} be r.e. with TM M
On X: Enumerate all $\mathbb{N}: Y_{1}, Y_{2}, \ldots$
For $i=1,2, \ldots$
For all $j \leq i$: $\operatorname{simulate} M$ on $\left(x, y_{j}\right)$ for i steps If simulation accepts $\left(x, y_{j}\right)$, halt + output Y,

A second Characterization of $R E$ sets
A language $L \subseteq\{0,1\}^{*}$
*Theorem A relation $A \subseteq \mathbb{N}^{k}$ is re.
If and only if there is a recursive relation $R \leq N^{k+1}$ such that recursive relation $R \subseteq\{0,1\}^{*} \times\{0,\}^{*}$

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Note we defined A to be re. iff there is a TM M such that $\forall \vec{x} \in \mathbb{N}^{n} \quad(M(\langle x\rangle)$ a ccepts $\Leftrightarrow \vec{x} \in A)$

A language $L \subseteq\{0,1\}^{*}$ is re.
iff there exists a relation $R \leqslant\{0,1\}^{2} \times\{0,1\}^{+}$
s.t. $\forall x \in\{0,1\}^{x}$
$x \in L \quad$ eff $\exists Z \in\{0,1\}^{x} R(x, z)$
where R is recursive

Ex. Let $L=$ Halt $=\{\langle x, y\rangle \mid T M$ encoded by x hoots on
Let $\left.R(x, y), \frac{z}{q}\right)=\left\{\begin{array}{l}1 / a c c e p t \text { if } x \text { halts } \\ \text { on } y \text { in exady z shes }\end{array}\right.$ input $\left.y\right\}$ \# i steps

A Second Characterization of RE Sets

* Theorem A relation $A \subseteq N^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Rightarrow : Let A be re., $\mathscr{L}(M)=A$
$R(\vec{x}, y)$: view y as encoding of an $m \times m$ tableaux for some $m \in \mathbb{N}$
$(\vec{x}, y) \in R \Leftrightarrow M(\vec{x})$ halts in m steps and accepts and y is the $m \times m$ tableaux of $M(\vec{x})$

A second Characterization of $R E$ Sets

* Theorem A relation $A \subseteq \mathbb{N}^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Leftarrow Let $R \leq \mathbb{N}^{k+1}$ be recursive relation such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y), \quad+\text { Let } \mathscr{L}(M)=R
$$

on input \vec{x} :
For $i=1,2, \ldots$
For $j=1$ to i
Run M on (\vec{x}, \hat{y}_{j})
halt + accept if $M\left(\vec{x}, y_{j}\right)$ a accepts

1. $L_{1}=\{x / T M$ encoded by x never moves head Left on any input?
2. $L_{2}=\{\langle x, y\rangle / T M x$ on input y wever moves head left $\}$
$\bar{L}_{2}=\{\langle x, y\rangle$ | x on input y mores head left at some point $\}$ re.
Lis
If state transitions \square
all have R then ne can halt + acepest

Harder case (of deciding L_{2})
State transition table does hae some fransitions that move head to left

Mochuie x. Assume stake of x are $q_{0} q_{1} q_{2} q_{3} q_{4}$ assume ipht/take alphabet $=\{0,1,4\}$
Let $y \in\{0,1\}^{*}$

$\rightarrow L=\{x \mid$ TM encoded by x halts on $\geqslant 2$.inputs in $\left.\{0,1]^{x}\right\}$
$\rightarrow L^{\prime}=\{x \mid$ TM encoded by x halts m exactly $\}$ 2 inputs in $\left.\{0,1)^{x}\right\}$

$$
\bar{L}=\{x \mid \text { TM } x \text { halts on } \leq 1 \text { inputs }\}
$$

If L, L are both re. then bolt are recusing So if L not recursive then L not re.

