
COMPUTABILITY , I
-



Turingrlachines " on computable Numbers , with an

application to the Entsuheidungsproblem
"

1936

^

Turingmahines :

I

0¥
83

1912 - 1954
M = ( Q , E , P , S , G , B, {qz} )



Turingrlachines " on computable Numbers , with an

application to the Entsuheidungsproblem
"

1936

^

church-TuringTh
A function/predicate is computable
realizable in physical world ⇒

it is computable by a TM

1912 - 1954



Notation

{ × } = Turing machine M such that #M = ✗

Ex}
,

= the unary function computed by ✗

Ex}n = the n-ary
function computed by ✗

( can generalize earlier so M takes

n inputs instead of 1)



today

what is computable and what isn't ?

We will mostly focus on unary
relations

or languages
- L s {0,1 }*
{ all finite length
strings over { 0,13

{0,13$ = all binary strings
of finite length

:{ go, 1,094 10,11, i -

-

- -

}



Definition Let M be a TM
,
E = {0

,
i}

LCM) £ {0,1 }* is the set of all (finite - length)

strings ✗ c- {0,1 ]* such thatD

Mlx) halts and outputs I1
the Language accepted by M



Recursive/RE recognizable /semi - computable
A language Le {on }* is recursively enumerate if

there exists a TM M such that LCM) =L

\

So if ✗ c- EO , it

✗ c- L ⇒ Mon ✗ halts and outputs
"
1
"

✗ EL ⇒ Mon ✗ halts and does Not output 1

or M does not halt on ✗



Recursive/RE

A language Le {0,1 }* is recursively enumerate if

there exists a TM M such that LCM) =L

So if ✗ c- EO , it

✗ c- L ⇒ Mon ✗ halts and outputs
"
1
"

✗ EL ⇒ Mon ✗ halts and does Not output 1

or M does not halt on ✗

recursively enumerable (ne) also called
semidecidable

, partial computable



Recursive/RE
computable /decidable

A language Ls {0,1 }* is recursive if there

exists a TM M such that LCM) =L
and M always halts

so if ✗ c- EO , it

✗ c- L ⇒ Mon ✗ halts and outputs
"
1
"

✗ EL ⇒ Mon ✗ halts and does Not output 1

( without loss of generality ,
✗☒ L⇒ M(×) halts + outputs

"

O
")



Recursive/RE

A language Ls {0,1 }* is recursive if there

exists a TM M such that LCM) =L
and M always halts

so if ✗ c- EO , it

✗ c- L ⇒ Mon ✗ halts and outputs
"
1
"

✗ EL ⇒ Mon ✗ halts and does Not output 1

( without loss of generality ,
✗☒ L⇒ Mcx) halts + outputs

"

O
")

recursive also called decidable
, computable



Recursive/RE

A function f :{0,13*-7 {0,1 ]* (or f : AN
"

→ IN )
is totalcomputabk if there exists a

TM M such that the {o, c)
*

Mcx) halts and outputs fcx ) .
all he {on }*
all subsets8{aB*→#É
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f. g computable ⇒ fog = fcg (x)) is computable
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CLOSURE PROPERTIES

① L recursive ⇒ L ne,
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CLOSURE PROPERTIES

① L recursive ⇒ L ne,

② Total computable functions closed under composition :

f
, g computable ⇒ fog = f ( g (x)) is computable

③ closure of recursive languages under n , v , 7 :

L
, ,
he recurs

lie ⇒ 4uLz , 4^42,74 ikz are recursive

⑤ Closure of re. Languages under n , U What about
4 , Lz re.

⇒ huh , L, nhz recursive
closure of

me
.undenn{

use dovetailing ie for it, . . - .

run M
,
for i steps, Me for i steps



CLOSURE PROPERTIES
,

cont 'd

④ L r
.
e.
,
and I ne

. ⇒ L is recursive

←
{ ✗ I ✗ ☒ is

* Note : Often LE EO , it is a set of

encodings . Example L = { ✗ / Ex}
, accepts input

"
in
"}

then we usually think of I as {✗ 11×3, does not accept in}
although technically
I :{✗ / ✗ is not a legal encoding or {×} , does notaccept 111]



L E { 0,13
*

( {0,13¥
= set of all strings our 0/1

of finite length

y g ,, ,, , , ,, ,, , ,, ,, .

,
.

.

I = { yearout ly ☒ L }



CLOSURE PROPERTIES
,

cont 'd

④ L r
.
e.
,
and I ne

. ⇒ L is recursive

PNI : ( Dovetailing)

Let M be a TM st LCM) =L
,

H

Mz be a
TM st LCM) =I

Neatness :
For i = 1

,
2
,
3
,

- - -

Run M , on ✗ for i steps
if Mr accepts × halt

+ accept
Run Mz on ✗ for i steps
it Mzaccgstsx , halt

t reject



CLOSURE PROPERTIES
,

cont 'd

④ L r
.
e.
,
and I ne

. ⇒ L is recursive

PNI : (Dovetailing)

Let M ,
be a TM st LCM) =L

,

Mz be a
TM st LCM ) =I

New TM M on × :

t.TT,
. . .

Run M ,
on ✗ for i steps
if Mr accepts × halt

& accept
Run Mz on ✗ for i steps
it Mzaccpts × , halt

+ reject

•Mon ✗ eventually halts since ✗ accepted by exactly
one

of M
, , Mz

• ✗ EL⇒ M
,
accepts ✗ ⇒ M accepts *

• ✗4-L⇒ Me accepts ✗ ⇒ M halts and rejects ✗



Many languages arent Recursively Enumerable !
Intuition :

Guy TM M maps uniquely to a string in { 0,1 }*

10,1J = {E , Q 1
, 0901,19

"
, 000,001, -

- -
- }

so the # ATMs is countable ,
and therefore

so are the ne
. Languages L E {0,1 }*

On the other hand
,
how large is the set of all languages ?

ie . the set of all subsets of Eo
, if

This set is uncountable! ( so many more languages\ than me. Languages )



manylanguasesarenotr.e.P-N.fiDiagonal ization

Mainidea_ : there are many more Languages
(subsets of {0,1]* ) than there are TMS .

Proof very
similar to Cantor's argument

showing that
there

-

is NO I -1 mapping
from the Real

numbers to the Natural

numbers



manylanguasesarenotr.e.P-N.fiDiagonal ization

• Fix an enumeration of
all TMS with { = {0,1 }

{✗ is
,
{ XD
,
{ xis, . .

-

• Make a 2-Way
infinite (but countable) fable

rows correspond to {43,943, . .

columns correspond to enumeration of
encodings if Turing

machines ×
, ,Xz, .

.
- -

• Entry Li , 's) : o
- if {×:3

, accepts xj
1 otherwise



all Ñ%p

manylanguasesarenotr.e.it#xiiij.ii.E4B*
Mz {Xz} O O l l 0 I 1

{ ×
,
}

"

AHH



manylanguasesarenotr.e.meM
, Ot I 0 I 0 0

÷H¥¥Ms 0 O O O ① I 1

: iagonal
D = {×; I { × ;}, does not accept ×;]

D- Language
D



~

theorem D is not me.

Proof By construction : For
all 1-Ms Mi

,

{✗i} (x;) =\ Dai ) so LCM;) ⇐ D

E . D Not me.



Using Reductions to show other

(more Natural) languages / functionsarenoteomp.utabklrecurs.ve/r.ffLtighnevd
:

① Say we know 4 Not recursive

To show Lz Not
recursive

,
design a TM M

,

always halts
& KM ,) =L , , assuming a

TM Me that always halts
& LCMa) = Lz

② suppose L , not
r
.
e.

To show Lz Not r.e. ,
construct M ,

St LCM ,
)=L

,

assuming a
TM Mz St LCMe) ⇒ Lz



Theltaltingproblemisnottecursive

K D= { ✗ I TM Ex} halts on input × }
Yellow language = {✗ I TM Ex} ☒ accgsts input × }

HALT =D { < ×
, y) / TM Ex} halts on input y}

claim HALT
,
K are both r. e.

Pt : simply run Ex} on y . Accept it
simulation halts .



Theltaltingproblemisnottecursive
d

k = { ✗ I TM Ex} halts on input × }

theorem K is Not recursive

Pwof_ Let L
,
=D .

We know L
,

is Not me
.

Assume Lz= K is
recursive , & Let Mz always

halt & Long)=Lz

fonstfÉinput :
Run Mz on X

• If Mz accepts × then

Run {✗3 on ✗ and output 1 iff {×} (x) 1=1

• If Mz halts & does not accept ✗ then output I
\



Theltaltingproblemisnottecursive
d

k = { ✗ I TM Ex} halts on input × }

theorem K is Not recursive

Pwof_ Let L
,
=D .

We know L
,

is Not me
.

Assume Lik is
recursive , & Let Mz always

halt & Long)=Lz

.co#timfTMM--rDninputx:
Run Mz on X

• If Mz accepts × then

Run {✗3 on ✗ and output 1 iff {×} (x) 1=1

• If Mz halts & does not accept × then output I

• M
,
,

halts on all ✗
.

• ✗ c- D ⇒ 9×31×7=1 I ⇒ M
,
1*7=1

•

✗ ☒ D ⇒ 2×31×7=1 ⇒ M
,
4) =\ I



Theltaltingproblemisnottecursive
d

k = { ✗ / TM Ex} halts on input × }

theorem K is Not recursive
-

theorem IT is Not me .

K is r.ee .

K ne. and I ne . ⇒ K recursive

property (4)

i. I not v. e.



Theltaltingproblemisnottecursive
d

k = { ✗ I TM Ex} halts on input × }

theorem K is Not recursive
-

theorem IT is Not r. e.

theorem HALT is not recursive

* K is a special case
of HALT & K Not recursive

→ L
,

= K , Lz=
HALT

.
Assume Mzalways

halts

and accepts Lz .

Construct M ,
for L

,

→

M^Rn Me on < ×
,
×> . Angst iff Mz accepts



Theltaltingproblemisnottecursive
d

k = { ✗ I TM Ex} halts on input × }

theorem K is Not recursive
-

theorem IT is Not r. e.

theorem HALT is not recursive

* K is a special case
of HALT & K Not recursive

→ L
,

= K , Lz=
HALT

.
Assume Mzalways

halts

and accepts Lz .

Construct M ,
for L

,

→

M^Rn Me on < ×
,
×> . Angst iff Mz accepts



Tips

( 1.) Try obvious algorithms to
see if you think

Language
is recurs lie

,

re
,
or Neither

(2) To show
L Not me

,
sometimes it helps

to work with I

lie . if I ne . ,
& I Not recurs

lie then

L Not r. e.)

(3) get reduction in
correct direction .

many times
constructed TM M

,
will ignore its own

input



SUMMARYSOFAR-fi.ve
saw D= { ✗ / {×}±(×) does not accept }

Is Not me . by diagonal/2-atlin

2. Using reductions
we proved

K
,
Halt are Not recursive



Using Reductions to show other

(more Natural) languages / functionsarenoteomp.utabklrecurs.ve/r.ffLtighnevd
:

① Say we know 4 Not recursive

To show Lz Not
recursive

,
design a TM M

,

always halts
& KM ,) =L , , assuming a

TM Me that always halts
& LCMa) = Lz

② suppose L , not
r
.
e.

To show Lz Not r.e. ,
construct M ,

St LCM ,
)=L

,

assuming a
TM Mz St LCMe) ⇒ Lz



Theltaltingproblemisnottecursive

K D= { ✗ I TM Ex} halts on input × }

HALT =D { < ×
, y) / TM Ex} halts on input y}

them. HALT
,
K are both r. e.

,

Neither are recursive
>



Theltaltingproblemisnottecursive
d

k = { ✗ I TM Ex} halts on input × }

theorem K is Not recursive

If K recurs 've then D also recurscie

theorem Halt Not recursive

If Halt recursive then
K recursive



Tips

( 1.) Try obvious algorithms to
see if you think

Language
is recurs lie

,

re
,
or Neither

(2) To show
L Not me

,
sometimes it helps

to work with I

lie . if I ne . ,
& I Not recurs

lie then

L Not r. e.)

(3) get reduction in
correct direction .

many times
constructed TM M

,
will ignore its own

input



L = { ✗ I {×} accepts at least one input}

Enumerate all strip in {on]*
{ E

, Oil , 00, 01, 10, 11
,
000

,
- - - -

1^11
Wog Wu V3

Dovetail Procedure for L on input × :
For i =L

, 3
3
,

.
- - -

For 5=1 , . . . i[Simulate {✗3
,

on Wj for
i steps

If any of
the simulations accepts, HALT & accept



L = { ✗ I {×} accepts at least one input}

• L is re.

(Dovetailing)

• L -

is not recursive

L
,
= K = { y l Ey}(y) halts }

Assume Lz=L
is recurslie & Let Me be TM Lolz)=L

and Mz always halts

M
,
on input y :

construct encoding 2- of TM {2-3 where

{Z} on input ✗ : Ignores ✗ + runs Ey]my
and axegets ✗ if {¥34) halts

Run Mz on 2- and accept y ift Matt) accepts

claim LCM
,) = K and M

, always halts

yek ⇒ {y } Cy) halts⇒
{z} accepts all inputs⇒ Mzcz)=/⇒ M

,
g) =/

y☒K⇒ Ey}Cyl doesnt ⇒ {2-3 accepts No input⇒Miz)# I ⇒M ,
(y) =\ /

halt



Completeness

A Language AEG.IT is me
.

-complete if

(1) A is r-e .

(2) YB a- {out, if B is re .
then Bem A

is computable

B reduces to A

so
- if A -

is recursive then B
recursive

⑧ if
☒ "* so

,#



Completeness

A set A a- CN is me
.

-complete if

(1) A is r-e .

(2) YB a- IN , if B is re .
then Bem A

F computable function f
: IN ⇒ IN such that

tix flx) c- A ⇐ ✗ C-B



Hilbertslothpnbenr ( 1900)

A diophantine equation
- is of the form pay)=o

where p is a polynomial over variables ×, , .. . ,✗n
with integer coefficients

3×9×3 tcxy D8 - ✗¥ =o

LDIOPH = { IP? / p has a solution
over IN}

theory
Diop H

'

's r-e
.

- complete



ANEquivalentcharactentatimofRESe.IS#nguageg

Let f : IN→ IN

Then R
,
E IN ✗ IN

is the set of all pairs Cx
, g) such that fix)=y

*theorem f computable
-

it and only
'

if Rf is ne .



An-cqucvalentchardctentat.sn#ESets

Let f : IN→ IN

Then R
,
E IN ✗ IN

is the set of all pairs Cx
, g) such that fix)=y

*theorem f- computable it and only
'

if Rf is ne .

Proof ⇒ : suppose f- computable .

TM for R
,
on in

-

put ix.y) :

Run TM computing f on ✗
.

If it halts and outputs y then accept CX
, g)

Otherwise reject cx,y)



ANEquwalentcharactenz-ationofR.ES#

Let f : IN→ IN

Then R
,
E IN ✗ IN

is the set of all pairs Cx
, g) such that fix)=y

*Iheorem_ f computable
-

it and only
'

if Rf is
r.e.pro#⇐ : Let R

,
be re

.

with TM M

O_nX! Enumerate all
IN : Y, > Yz , . .

- .

For i --1,2, -
-
.

For all jei : simulate M
on CX

,
Y;) for i steps

If simulation accepts CX
, y;) ,

halt a output y
,



ASecondcharactercz-atiimofR.ES#
A language he {0,1 ]☒

-

ETHER A relation A a- INK is r- e
.

if and only if there
-

is a recursive relation
recurs in relation RE 10,1]*×{q ,}*

Rs NK
" such that

I c- A ⇐> By RCI ,y) the
IN
"

Note we defined A
to be re. iff there is a TM M

such that V- It IN
" (Max>) accepts ⇒ Ie A)

-



A language LE EQI]* is me
.

iff there exists a tone relation Re {0,13%10,15
s.t.V-xc-EO.IT

✗ EL iff ]-2610,18 RCX,-2)

where Ris recurs,'re

C-×. Let L= Halt
= {say) / TM encoded by

✗ halts on

let Ray),¥={
"accept it ✗ halts input y }my inexactly -2 steps
100W

.# of steps



ASecondcharacteriz-ationofR.ES#*Theore-mA relation A a- INK is r- e
.

if and only if there
-

is a recursive relation

Rs NK
" such that

I c- A ⇐> By RCI ,y) the
1N
"

¥?%¥¥÷ re , LCM) = A
RCI ,y) : view y as encoding

of an mxm tableaux

for some me
IN

⇐ it ) c- R ⇒ Mail
halts in m steps and accepts

and y is the
mxm tableaux

of MKE)



AscondcharacterioatimofRE.se#*Theore-mA relation A a- INK is r- e
.

if and only if there
-

is a recursive relation

Rs NK
" such that

I c- A ⇐> By RCI ,y) the
1N
"

¥0%¥¥¥-←,µk" be recursive relation such that
IEA ⇒ 3-y

RCI,y) , a Let LCM) = R

on input I :
For i = 1,2, - • • .

For j =L to L

Run M on (I
, y;)

halt & accept if MCI, -1;) accepts



L
,

= { × / TM encoded by ✗ never moves head left
←

on any input ]

2. L; { < ×,y> / TM ✗ on input y never moves head left }

←
I = { Lay> I × on input y mores head left

at some point } ←

u

☒ state
transition>

y=smnesRI-£ °%%i\*qyy
.
I hate
head sons

R (%' 1) → ( ;#]%:ONew
recon

( ,
A) → R

a# halt + accept



Hardenberg ( of deciding (2)

state transition table doses
hae some

transitions that more head to left

machine ✗ .

Assume states of ✗ are 808,929, 94
assume input/tape alphabet

= {0,1
,
$]

let ye{Q,

⑨÷③→



→ L = { ✗ / TM encoded by ✗ half> on

I. 2
.
inputs in so

, IT ]

L
'
= Ex 1 TM encoded by ✗ halts m exactly \thee

.→ 2 inputs in ↳
'
Ñ }
§?

I = { ✗ / TM ✗ halts on me si inputs]
←
Notre
?

If L
,
I are both re . then both are

recuesiu

So if L not recurs in then
I not me .


