COMPUTABILITY, I

"On computable Numbers, with an application to the Entscheidungspröblen" 1936

Turing Machines :

1912 - 1954

"On computable Numbers, with an application to the Entscheidungspröblem" 1936

1912 - 1954

Notation

$$\{\chi\} = Turing machine M such that $\#M = \chi$
 $\{\chi\}_{1} = the unary function computed by \chi$
 $\{\chi\}_{n} = the n-ary function computed by \chi$
 $\{\chi\}_{n} = the n-ary function computed by \chi$
 $(can generalize earlier so M takes n inputs instead of 1)$$$

Today

Definition Let M be a TM,
$$\Xi = \{0, i\}$$

 $d(M) \equiv \{0, i\}^*$ is the set of all (finite-length)
strings $x \in \{0, i\}^*$ such that
 $M(x)$ halts and outputs 1
the Language accepted by M

Recursive / RE Sets recognizable / semi-computable
A language
$$L \leq 20,13^*$$
 is recursively enumerable if
there exists a TM M such that $\mathcal{L}(M) = L$

Recursive / RE Sets

A language $L \leq 20,13^{*}$ is <u>recursively enumerable</u> if finere exists a TM M such that $\mathcal{L}(M) = L$

recursively enumerable (r.e.) also called semidecidable, partial computable Recursive / RE Sets $A \text{ language } L \leq \underbrace{10,12^{*}}_{\text{recursive}} \text{ is } \underbrace{\text{recursive}}_{\text{recursive}} \text{ if there}$ $e_{xists} a TM M \text{ such that } I(M) = L$ and M always halts

So
$$\forall x \in \mathbb{E}_{0,1}^{\times}$$

 $x \in L \implies M$ on x halts and outputs "1"
 $x \in L \implies M$ on x halts and does not output 1
(without loss of generality,
 $x \in L \implies M(x)$ halts + outputs "0")

Recursive / RE Sets

A language $L = \underbrace{\{0,1\}}^{*}$ is <u>recursive</u> if there exists a TM M such that $\mathcal{L}(M) = L$ and M always halts

So
$$\forall x \in \mathbb{E}_{0,1}^{\times}$$

 $x \in L \implies M$ on x halts and outputs "1"
 $x \in L \implies M$ on x halts and does not output 1
(without loss of generality,
 $x \in L \implies M(x)$ halts + outputs "0")

recursive also called decidable, computable.

L recursive => L r.e.
 (a) Total computable functions closed under composition:
 f,g computable => fog = f(g(x)) is computable

CLOSURE PROPERTIES, cont'&

(4) L r.e., and \overline{L} r.e. \Rightarrow L is recursive $\{x \mid x \in L\}$

* Note: Often $L \in \mathbb{E}[0,1]^*$ is a set of encodings. Example $L = \mathbb{E} \times (\mathbb{E} \times \mathbb{I}, \mathbb{E} \times \mathbb{I})$ then we usually think of \mathbb{I} as $\mathbb{E} \times [\mathbb{E} \times \mathbb{I}, \mathbb{E} \times \mathbb{I}]$ although technically $\mathbb{I} = \mathbb{E} \times (\mathbb{E} \times \mathbb{I})$ and a legal encoding or $\mathbb{E} \times \mathbb{I}$, does not accept information of $\mathbb{E} \times \mathbb{I}$.

$$L \leq 20, 13^{*}$$

$$\begin{bmatrix} 80, 13^{*} \\ 80, 13^{*} \end{bmatrix} = \text{set } g \text{ all strings are } 0/1$$

$$g \text{ finite length}$$

$$\begin{bmatrix} 1 \\ 12 \\ 12 \\ 12 \end{bmatrix} = 2 \text{ yesoins} \left(\text{ yse } L \right)$$

CLOSURE PROPERTIES, cont'&

CLOSURE PROPERTIES, cont'd ④ L r.e., and L r.e. ⇒ L is recursive Proof: (Dovetailing) Let M, be a TM st $\mathcal{Z}(M) = L$ M_2 be a TM st $\mathcal{Z}(M) = \overline{L}$ New TM M on X: For i=1, 2, 3, ... Run Mion x For i steps -if Miaccepts x halt + accept Run M2 on x for i steps if M2 accepts x, halt + reject • M on x eventually halts since x accepted by exactly one of M, Mz • XEL => M, accepts X => M accepts X • X&L => M2 accepts X => M halts and rejects X

Many Languages are Not r.e.

Proof: Diagonalization Main idea : There are many more Languages (subsets of $\{0,1\}^*$) than there are TMs. Proof very similar to cantor's argument showing that there is NO 1-1 mapping from the Real numbers to the Natural numbers

Theorem D is Not r.e. Proof By construction: For all TMs M_{i} , $\{\chi_i\} (\chi_i) \neq D(\chi_i)$ so $\mathcal{J}(M_i) \neq D$

. D) Not r.e.

The Halting Problem is Not Recursive

$$K \stackrel{d}{=} \left\{ \begin{array}{l} \times & \left[TM \ \$ x \right] \ halts \ on \ input \times \right] \right\}$$
Yellow language = $\left\{ \times & \left[TM \ \$ x \right] \ excepts \ input \times \right\}$
HALT $\stackrel{d}{=} \left\{ \left\{ \times, y \right\} \right| TM \ \$ x \right\} \ halts \ on \ input \ y \right\}$
HALT , K are both r.e.
Pf: simply run $\left\{ \varkappa \right\} \ on \ y$. Accept it simulation halts.

•

•
$$M$$
, halts on all X
• $X \in D \implies \{x3(x) \neq 1 \implies M_1(x) = 1$

•
$$x \ge 0 \implies (x \le (x) = 1 \implies M_1(x) \ge 1$$

The Halting Problem is Not Recursive

$$K = \begin{cases} X \ | TM \ SX \\ S \ halts on input \\ X \\ \hline Theorem \ K is Not recursive
Theorem \ K is Not recursive
Theorem \ K is Not r.e.
K is r.e.
K r.e. and \ K r.e. \Longrightarrow K recursive
property (4)
 \therefore K Not r.e.$$

The Halting Problem is Not Recursive K = { X [TM {x} halts on input x] Theorem K is not recursive Theorem K is Not r.e. Theorem HALT is Not recursive * K'is a special case of HALT + K not recursive L, = K, Lz = HALT. Assume Mz always halts and accepts Lz. Construct M, For L, Marx: Run M2 on (X, X). Accept iff M2 accepts

The Halting Problem is Not Recursive K = { X [TM {x} halts on input x] Theorem K is not recursive Theorem K is Not r.e. Theorem HALT is Not recursive * K'is a special case of HALT + K not recursive L, = K, Lz = HALT. Assume Mz always halts and accepts Lz. Construct M, For L, M on X: Run M2 on (X, X). Accept iff M2 accepts

SUMMARY SO FAR

1. We saw
$$D = \{\chi \mid \{\chi\}_1(\chi) \text{ does not accept}\}$$

is not r.e. by diagonalization

The Halting Problem is Not Recursive

$$K \stackrel{d}{=} \{ x \mid TM \ \{x\} \ halts on input x \}$$

HALT $\stackrel{d}{=} \{ \langle x, y \rangle \mid TM \ \{x\} \ halts on input y \}$
Theorem. HALT, K are both r.e.,
Neither are recursive

The Halting Problem is Not Recursive d { X [TM {x} halts on input x]

Theorem K is not recursive

If k recursive then D also recursive

Theorem Halt Not recursive If Halt recursive then K recursive

L = { × | { x} accepts at least one input } · L'is r.e. (Dovetailing) · L'is not recursive $L_1 = K = \{y \mid \{y\}(y) \mid halts\}$ Assume L2=L is recursive + cet M2 be TM 2(M2)=L and M2 always halts M, on input y: Construct encoding 2 QTM [2] where {2} on input x: Ignores x + runs {} on y and accepts x if {y3(y) halls Run M2 on z and accept y iff M2(2) accepts claim L(M,) = K and M, always halts yek => 2-3(y) halts => 223 accepts all inputs => M2(2)=/=> M(y)=/

Completeness

A Language As [0,1]" is r.e. - complete if (1) A is r.e. (2) VB = [9,1]", if B is r.e. then B = A $\int F$ is computable B reduces to A SO if A is recursive then B recursive

Completeness

A set
$$A = (N \text{ is } r.e. - complete `ff
(1) A is r.e.
(2) $\forall B \leq IN$, if B is r.e. then $B \leq_m A$
 $\exists \text{ computable function } f: IN \Rightarrow N \text{ such that}$
 $\forall x \quad f(x) \in A \iff x \in B$$$

Hilbert's 10th Problem (1900)

A diophantine equation -is of the form p(x) = 0where p is a polynomial over variables $\chi_{1,3}, \dots, \chi_{n}$ with integer coefficients

$$\frac{6\times}{2} \frac{3\times}{1} \frac{1}{1} \frac{$$

Theorem J DIORH is r.e. - complete

An Equivalent characterization of RE Sets

Let f: IN -> N Then R_f = IN × IN is the set of all pairs (x,y) such that f(x)=y of Theorem & computable if and only if Rf is r.e. Proof => : Suppose f computable. TM for Rf on input (x,y): Run TM computing f on X. If it haits and outputs y then accept (X, Y) Otherwise reject (x,y)

An Equivalent characterization of RE Sets

Let f: IN -> N Then R_f = IN × IN is the set of all pairs (x,y) such that f(x)=y *Theorem f computable if and only if Rf is r.e. Proof \in : Let R, be r.e. with TM M On X: Enumerate all IN: Y1, Y2, For i=1, 2, ... For all j=i; simulate M on (x, y;) for i steps If simulation accepts (x, y;), halt + output y,

A second Characterization of RE sats
A language
$$L \leq \{0\}\}^*$$

theorem A relation $A \leq N^K$ is r.e.
if and only if there is a recursive relation
recursive relation $R \leq [0,1]^* \times \{0,1\}^*$
 $R \leq N^{K+1}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^n$
Note we defined A to be r.e. iff there is a TM M
such that $\forall \vec{x} \in IN^n (M(\langle x \rangle) | a ccepts \iff \vec{x} \in A)$

-

A language
$$L \in \{0,1\}^{\#}$$
 is r.e.
iff there exists a best relation $R \in \{0,1\}^{\#} \times \{0,1\}^{\#}$
st. $\forall x \in \{0,1\}^{\#}$
 $K \in L$ iff $\exists z \in \{0,1\}^{\#}$ $R(x,z)$
where R is recursive
 E_{x} . Let $L = Hult = \{(x,y) \mid TM \text{ encoded by}$
 $x hools on$
Let $R((x,y),z) = \{1/accept \text{ if } x \text{ halts} \atop{on y in mody z stypes}}$ input $y \notin$
 $\# \|gsteps$

A second Characterization of RE Sets

** Theorem A relation
$$A = IN^{k}$$
 is r.e.
if and only if there is a recursive relation
 $R = IN^{kti}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^{n}$
Proof sketch
 $\Rightarrow:$ Let A be r.e., $\vec{x}(M) = A$
 $R(\vec{x}, y):$ view y as encoding of an $m \times m$ tableaux
for some $m \in IN$
 $(\vec{x}, y) \in R \iff M(\vec{x})$ halfs in m steps and accepts
and y is the $m \times m$ tableaux
of $M(\vec{x})$

A second Characterization of RE Sets

Theorem A relation
$$A \equiv N^{K}$$
 is r.e.
If and only if there is a recursive relation
 $R \equiv N^{K+1}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^{n}$
Proof sketch
 \leftarrow Let $R \equiv iN^{K+1}$ be recursive relation such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y), \quad * \text{ Let } \vec{z}(M) = R$
on input \vec{x} :
For $i = 1, 2, - \cdots$
For $j = 1$ to i
Run M on (\vec{x}, y_{j})

halt + accept if M(x, Y;) a ccepts

$$\begin{bmatrix} 1 & L_{1} = \frac{1}{2} \times | TM encoded by \times wever moves head Left \\ on any unput 3 \end{bmatrix}$$

$$2 \cdot L_{2} = \frac{1}{2} \langle x, y \rangle | TM \times on input y wever moves head Left 3$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{2} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ moves head left }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ on input } y \text{ on input } y \text{ on input }$$

$$L_{3} = \frac{1}{2} \langle x, y \rangle | X \text{ on input } y \text{ on inp$$

Stak transition table does have some fransitions that more head to left

