announcements

- . HW1 DUE OCT 6 (8 pm)
- · Test 1 Wed OCT 13 (in class)

This Week

Proof Systems for First order Lugic
 LK: Soundness and Completeness

FIRST ORDER SEQUENT CALCULUS LK

Lines are again sequents $A_{1},...,A_{K} \longrightarrow B_{1},...,B_{L}$

where each Ai, B., is a proper L-formula

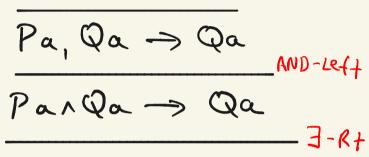
RULES OF PK

PLUS NEW RULES FOR \forall , \exists like a large oR

New Logical Rules for Y, 3

Fleft
$$A(b), \Gamma \rightarrow \Lambda$$
 3-right $\Gamma \rightarrow \Lambda, A(t)$
 $\exists x A(x), \Gamma \rightarrow \Lambda$ $\Gamma \rightarrow \Lambda, \exists x A(x)$
* A, t are proper
* b is a free variable Not appearing in lower sequent of rule

Example of an LK proof



 $\forall x \in (x \land x) \rightarrow \exists x \in (x \land x \land x) \times E$

XDXE <- (xDVX)XE JX(PX NQX) -> JXPX

SOUNDNESS

Detn A first order sequent $A_1,...,A_k \rightarrow B_1,...,B_k$ is valid if and only if its associated formula $(A_1 \land ... \land A_k) \supset (B_1 \lor ... \lor B_k)$ is valid.

Soundness Theorem for LK Every sequent provable in LK is valid

Soundness (Proof): By induction on the number of sequents in proof

Key Lemma For all rules/axioms of LK

For all instantiations of a rule/axiom

if upper sequents of the rule are valid

then lower sequent is also valid

 $A \leftrightarrow A$

 $\Gamma \rightarrow \Delta, A, B$

Key Lemma (Proof Sketch) Example: VRight Rule (T-> Ux A(x), A) Assume: P > A(b), a is valid. Show P > Vx.A(x), a is also valid Let 1 = B1, 13 Bk, 1 = C1, 17 Ce Then ByoBzv..vBkv Cv..vCev A(6) is valid

ie v m, 6: m = D v A (6) [6]

Show 491, 6: 91 = D - 4x A(x) [6]

Key Lemma (Proof Sketch) Example: VRight Rule (T-> VX A(x), A) Assume: P > A(b), a is valid. Show P > Vx A(x), a is also valid Let 1 = B,, Bk, 1 = C,, , Ce Then ByoBzv..vBRV Cv..vCev A(6) is valid ie v m, 6: m = D v A(6) [6] Let 6 be an object assignment to all free variables in DVA(b) except for b Case 1: M= D[6'] : ME DVA(b) L6] VG extending 6 (since b does not occur in D) Case 2 m > D[61]. :. M = A(b)[6', Mb] YMEM (since DVA(b) is valid) ... ME A(b) V6 extending 6 :. M = DVA(b)[6]

TODAY: godels complÉTENESS THEOREM

Defn An LK-\$ proof is an LK-proof, but
leaves are either axioms (A>A) or of the
form >A for AE\$

goal prove that if $\Gamma > D$ is a logical consequence of Φ , then there is an $L(K-\Phi)$ proof of $\Gamma > D$ (called Derivational Completeness)

Defin Let A (a,..an) be a formula with free variables a,..an. Then YA is YXYX..YX A(X..Xn) (Called universal closure of A)

TODAY: LK COMPLETENESS

(MAIN CEMMA) completeness Lemma

If $\Gamma \Rightarrow \Delta$ ris a logical consequence of a set of (possibly infinite) formulas $\forall \overline{\Phi}$ then there exists a finite subset $\{C_1,...,C_n\}$ of $\overline{\Phi}$ such that $\forall C_1,...,V_n$, $\Gamma \Rightarrow \Delta$ has a (cut-free) PK proof

* We will assume = not in language for Now

Dervational Completeness Theorem

Let Φ be a set of sequents or formulas such that the sequent $\Gamma \rightarrow \Delta$ is a consequence of $\forall \Phi$.

Then there is an $LK-\Phi$ proof of $\Gamma \rightarrow \Delta$.

Proof follows from Completeness Lemma (similar to derivational completeness of PK from completeness)

Proof of LK completeness Lemma

High Level idea (assume \$\P\$ is empty for now)

- · As in PK completeness, we want to construct an LK proof in reverse.
 - « Start inth r⇒ a at root, and apply rules in reverse (to break up a formula into one or 2 smaller ones)
- Tricky rules are ∃right + ∀left.
 When applying one of these in reverse,
 Need to "guess" a term

New Logical Rules for Y, 3

3-right

[-> (, A(t)

Vew Logical Rules for V, I
V-left A(t),
$$\Gamma \rightarrow \Delta$$
 V-right $\Gamma \rightarrow \Delta$, A(b)
 V_{\times} A(x), $\Gamma \rightarrow \Delta$ $\Gamma \rightarrow \Delta$, V_{\times} A(x)

Fleft
$$A(b), \Gamma \rightarrow 0$$
 $\exists \text{-right}$ $\Gamma \rightarrow 0, A(t)$ $\exists \times A(x), \Gamma \rightarrow 0$ $\exists \times A(x)$

* A, t are proper to the variable Not appearing in lower sequent of rule

Proof of LK completeness Lemma

High Level idea (assume \$\Pi\$ is empty for now)

- · As in PK completeness, we want to construct an LK proof in reverse
- « Start with r → A at root, and apply rules in reverse (to break up a formula into one or 2 smaller ones)
- Tricky rules are Iright + Vleft. When applying one of these in reverse, Need to "guess" a term
- · Key is to systematically try all possible terms without going down a rabbit hole.

Example of an LK proof

$$\frac{Pa \rightarrow Pa}{Pa, Qa \rightarrow Pa}$$

$$\frac{Pa, Qa \rightarrow Qa}{Pa, Qa \rightarrow Qa}$$

$$\frac{Pa, Qa \rightarrow Qa}{Pa, Qa}$$

$$\frac{Pa, Qa \rightarrow Qa}{P$$

x OxE ~ x9xE ← (x D x x9) xE

Example of an LK proof

ParQa -> Pb

Pan Qa -> 3xPx

AYXE (PXNQX) -> BXPX

ParQa -> 3xQx

XDXE (XDXX)XE

XDYE V XYXE (XDVXY)XE

Instead:

(3)

Pa,Qa -> Pb, 3xPx

3

ParQa -> Pb, 7xPx

Pan Qa -> 3xPx

ALLE <- (NDV XJ) YE

ParQa -> 3xQx

XDXE (XDXX)XE

XDYE V XYXE (YDVXY)XE

Instead

Pan Qa -> 3xPx Pan Qa -> 3xPx

X (PX NQ X) -> 3xPX

ParQa -> 3xQx

XDXE (XDXX)XE

XDXE V XXXE (XDVX))XE

Instead Pa, Qa-DPb, Pfa, Pfb, 3xPx Try Pa,Qa >Pb, Pfa, 3xPx

ogan Pa,Qa >Pb, 3xPx ParQa -> Pb, 3xPx ParQa -> 3xQx Pan Qa -> 3xPx >DXCXXXXXE 3x(Px nQx) -> 3xPx

XDXE V XXXE (XDVX)XE

Instead There are infinitely many choices! Pa, Qa -> Pb, Pfa, Pfb, 3xPx Need a systematic again way to try all Pa, Qa ->Pb, Pfa, 3x8x Pa,Qa -> Pb, 3xPx ParQa->Pb, 3xPx ParQa -> 3xQx Pan Qa -> 3xPx

3x(Px nQx) -> 3xPx

Jx(Px ∧Qx) → JxPx ∧ JxQx

3×(/*v@x) >> 3×@x

Instead There are infinitely many choices! Pa, Qa -> Pb, Pfa, Pfb, 3xPx Need a systematic and again way to try all and for all Pa, Qa >Pb, Pfa, 3x8x frontier sequents Pa,Qa -> Pb, 3xPx in current proof! ParQa-> Pb, 3xPx ParQa -> 3xQx Pan Qa -> 3xPx XDXE (XDXX)XE AX(PX AQX) -> 3xPX XDXE V XXXE (XDVX)XE

Enumeration of formulas + terms :

Since the number of underlying symbols of L is finite, there is an enumeration of pairs $\langle A, t, \rangle$, $\langle A_2, t_2 \rangle$, such that every term and every formula in I occur infinitely often in the enumeration

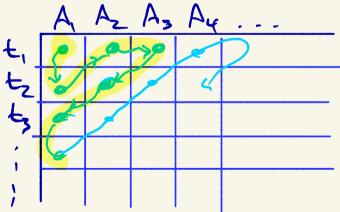
More details of enumeration (L finite)

Enumerate all L-formulas A, Az, ...

Enumerate in L-terms ti, ...

such that every formula/term occurs
infinitely often

Enumerale all pairs to have same property



Start with Φ = set of sequents/formulas, $\Gamma \rightarrow \Delta$ Want an algorithm that will output an Φ -LK proof of $\Gamma \rightarrow A$ Whenever $\Phi \models \Gamma \rightarrow \Delta$

- · Initially II is the sequent 1->0
- At each stage, modify IT by adding some $A_i \in \bar{\Phi}$ to antecedent of all sequents in IT, and adding onto the "frontier" or "actil" sequents in IT.
- · Active sequent: a leaf sequent or TT, not a weakening of A=A
- at stage k: we will use the kth pair (Aktk) in the enumeration

Stage K: \(A, t\)

(1) If $A_k \in \overline{\emptyset}$, replace $\Gamma' \to \overline{\emptyset}$ in $\overline{\Pi}$ by $\Gamma, A_k \to \overline{\emptyset}'$ (2) If A_k atomic, skip this step. Otherwise

for all leaf sequents containing A_k , break up

outermost connective of A_k using the appropriate

logical rule, and t_k if necessary.

Stage K:

- (1) If $A_k \in \overline{\emptyset}$, replace $\Gamma' \to \Delta'$ in $\overline{\Pi}$ by $\Gamma', A_K \to \Delta'$
- (2) If A_K atomic, skip this step. Otherwise for all leaf sequents containing A_K , break up outermost connective of A_K using the appropriate logical rule, and t_K if necessary.

Examples:

. A = 3x8x

Stage K: (1) If $A_k \in \emptyset$, replace $\Gamma' \to \Delta'$ in Π by $\Gamma', A_K \to \Delta'$ (2) If Ax atomic, skip this step. Otherwise for all leaf sequents containing Ax, break up outermost connective of Ax using the appropriate logical rule, and tx if Necessary. r → A, B(c) < Examples: · Ax = Yx B(x) r -> 0, 4xB(x) keep both B(t), V x B(x), r > 1 T, YKB(K) -> A

Exit When no more active sequents

AD X L >V

We want to show:

• If Algorithm halfs, IT is an LK-\$ proof of r→A

· If Algorithm Never halts, then

Show: If our algorithm halts owhen run on \$, \$\tau > 4 then it produces a Q-LK proof of r=a What will proof tree look like if it Alg halls ?

formulas ir Φ

We want to show: If Algorithm Never halts, then DKP > 1

(or if it halts but some
leads sequent doesn't contain some formula A)

(eat) sequent doesn't contain lebs + rt 6 ?

Suppose Algorithm doesn't hatt and let IT be the (bypically infinite) tree that results

Leaf "sequents" of T look like Γ , C, C, C, C, C $\to \Delta'$ infinite sequence confaining all of Φ each infinitely often

Find a bad path β in the tree:

If II finite, 3 some active leaf node containing only atomic formulas. Choose β to be path from root to this leaf

We want to show: If Algorithm Never halts, then YET->A

Find a bad path \$ in the tree:

If II finite, 3 some active leaf node containing only atomic formulas. Choose \$ to be path from root to this leaf

If II infinite by Körig's Lemma, 3 an infinite path. Let \$ be this path

Properties of B

- (1) B is a path starting at root
- (2) all sequents in & were once active
- (3) for all sequents in \$, no formula occurs on both the Left and right side of sequent
- (4) all atomic formulas $A \in \overline{\phi}$ in root sequent of β on LEFT, and thus occur on LEFT of all sequents in β

By (3)+(4), we know that NO atomic $A \in \overline{\phi}$ occurs on the Right of any sequent in B

Proof of Correctness (cont'd)

We will construct a "term" model M, + object assignment 6 from β such that $M \not= \emptyset$ [G] but $M \not= \Gamma \rightarrow \Delta$ (and thus our algorithm fails to halt + produce a proof only when $\Gamma \rightarrow \Delta$ is not a logical consequence of $\overline{\Phi}$.)

Let M (univine) be all forms our of Nie thing is then our interpretation q all functions is natural: If we have a term

$$f: parts & unitare element
 $f(51, 5551) = fsisssi$$$

Proof of correctness (cont'd)

We will construct a "term" model M, + object assignment 6 from \(\beta \) such that \(M \neq \beta \) [G] but \(M \neq \Gamma \) \(\righta \)

Universe M: all L-terms t (containing only free vars)
6: map variable a to itself (6(a)=ā)

 $f^{an}(\bar{r}_{k}...\bar{r}_{k}) \stackrel{d}{=} fr_{k}...r_{k}$ PM (r, ...,) = true if and only if Pr..., rk
is on the LEFT of some sequent in B

Proof of Correctness (cont'd)

<u>Claim</u>: For every formula A, M,6 satisfies A iff A is on the LEFT of some sequent in B, and

Mie falsifies A iff A is on the RIGHT of some sequent in &

Proof of Correctness (cont'd) Claim: For every formula A,

M, 6 satisfies A iff A is on the LEFT of some sequent in B, and

Mis falsifies A iff A is on the RIGHT of some sequent in B

Proof (induction on A)

A atomic: A cannot occur or LEFT of some sequent in & and on RIGHT

OF some sequent in & (since A persists up B)

Proof of Correctness (cont'd)

Claim: For every formula A,

M,6 satisfies A iff A is on the LEFT of some
sequent in B, and

M,6 falsifies A iff A is on the RIGHT of some
sequent in B

<u>Proof</u> (induction on A)

Induction Step Example $A = 3 \times B(x)$ on Right high level: if A occurs in some sequent in β , then A persists upward until it becomes the active formula (at stage K, $A_k = A$) then use inductive hypothesis

Proof of correctness (cont'd) Claim: For every formula A, M, 6 satisfies A iff A is on the LEFT of some sequent in B, and Mis falsifies A iff A is on the RIGHT of some sequent in B ··· >B(+,), 7xB(x)... <u>Proof</u> (induction on A) Induction Step A= 3xB(x) on RigHT By Ind hyp, M, & falsify B(t;) $- \rightarrow 3 \times B(x)$... Since 3xB(x) persists, we have Ht B(t) on Right of some sequent Thus om, 6 falsity BLt) for all Lerms t

Test	on W	ednesday
4 que	stims	
		Valid/T

- Satisfiable, Valid/Tautology, UNSAT short answer

- Prob Syskens Resolution + PK Completeness (for both Implicational completeness for PK

-> compactness] -> Definitions, Key Theorems \ short ausven