announcements

- HW1 DUE OCT 6 (8 pm)
- Test 1 Wed OCT 13 (in class)

This week

- Proof systems for First order Logic LK: Soundness and Completeness

FIRST ORDER SEQUENT CALCULUS LE
Lines are again sequent

$$
A_{1}, \ldots, A_{k} \rightarrow B_{1}, . ., B_{l}
$$

where each $A_{i}, B_{\text {, }}$ is a proper \mathcal{L}-formula
RULES
OLD RULES OF PK
plus new rules for \forall, \exists
like a large AND

New Logical Rules for \forall, \exists
\forall-left $\quad \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \quad \forall$-Right $\quad \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall \times A(x)}$

Heft $\quad \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \quad \exists$-right $\quad \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists \times A(x)}$

* Att are proper
* b is a free variable Not appearing in cower sequent of rule

Example of an LK proof

SOUNDNESS
Detn A first order sequent $A_{1, \ldots}, A_{k} \rightarrow B_{1, \ldots}, B_{l}$ is valid if and only if its associated formula $\left(A_{1} \wedge \ldots \wedge A_{K}\right) \supset\left(B_{1} \vee \ldots \vee B_{l}\right)$ is valid.

Soundness Theorem for LK Every sequent provable in LK is paled

Soundness (Proof): By induction on the number of sequents in proof

Key Lemma For all rules/axioms of LK
For all instantiations of a rule/axiom
if upper sequents of the rule are valid then lower sequent is also valid

$$
\frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, \Delta \vee B} \quad A \rightarrow A
$$

Key Lemma (Proof sketch)
Example: $\forall R i g h t$ Rule $\quad\left(\frac{\Gamma \rightarrow A(b), \Delta}{\Gamma \rightarrow \forall x A(x)}, \Delta\right)$
Assume: $\Gamma \rightarrow A(b), \Delta$ is valid. Show $\Gamma \rightarrow \forall x \mathcal{A}(x), \Delta$ is also valich
Let $\Gamma=B_{1}, \ldots, B_{k}, \Delta=C_{1}, \ldots, C_{e}$
Then $\underbrace{\neg B_{1} v \neg B_{2} v \cdots \neg B_{1} \vee C_{1} v \cdots \vee C_{e} v A(6)}_{D}$ is valid
ie $\forall 9 n, 6: 9 n \not D \cup A(b)[6]$

Show $\forall a x, 6:$ ox $\models D \cup \forall x A(x)[6]$

Key Lemma (Proof sketch)
Example: \forall Right Rule $\quad\left(\frac{\Gamma \rightarrow A(b), \Delta}{\Gamma \rightarrow \forall x A(x), \Delta}\right)$
Assume: $\Gamma \rightarrow A(b), \Delta$ is valid. Show $\Gamma \rightarrow \forall x A(x), \Delta$ is also valid
Let $\Gamma=B_{1}, \ldots, B_{k}, \Delta=C_{1}, \ldots, C_{e}$
Then $\underbrace{\neg B_{1} v \neg B_{2} v \cdots \neg B_{1} \vee C_{1} v \cdots \vee C_{e} v A(6)}_{D}$ is valid

$$
\text { ie } \forall m, 6: g n \not D \vee A(b)[6]
$$

Let σ^{\prime} be an object assignment to all free variables in $D \vee A(b)$ except for b Case 1: $m \neq D\left[6^{\prime}\right]$

$$
\begin{aligned}
& \text { 1: } m \vDash D \vDash 0\left(6^{\prime}\right] \\
& \left.\therefore M \vee(b)[6] \forall 6 \text { extending } 6^{\prime} \text { (since } b \text { does Not occur in } D\right) \text {) }
\end{aligned}
$$

Case $2 m \neq D\left[\sigma^{\prime}\right]$.

$$
\begin{aligned}
& \therefore m \vDash A(b)\left[6^{\prime}, m / b\right] \quad \forall m \in M \text { (since } D \cup A(b) \text { is valid) } \\
& \therefore M \vDash A(b) \forall 6 \text { extending } 6^{\prime} \\
& \therefore m \vDash D \vee A(b)[6]
\end{aligned}
$$

TODAY: giodels completeness TIIEDREM
Defy $A_{n} L K-\Phi$ proof is an $L K$-proof, but leaves are either axioms $(A \rightarrow A)$ or of the form $\rightarrow A$ for $A \in \Phi$
goal Prove that if $r \rightarrow \Delta$ is a logical consequence of Φ, then there is an $L K-\Phi$ proof of $\Gamma \rightarrow \Delta$ (Called Derivational completeness)
Deffer Let $A\left(a_{1} \ldots a_{n}\right)$ be a formula with free variables $a_{1} \ldots a_{n}$. Then $\forall A$ is $\forall x_{1} \forall x_{2} \ldots \forall x_{n} A\left(x_{1} \ldots x_{n}\right)$ (called universal closure of A)

TODAY: GK COMPLETENESS
(MAIN CEMMA) completeness Lemma
If $\Gamma \rightarrow \Delta$ is a logical consequence of a set of (possibly infinite) formulas $\forall \Phi$ then there exists a finite subset $\left\{C_{1}, \ldots C_{n}\right\}$ of Φ such that
$\forall C_{1}, \ldots, \forall C_{n}, \Gamma \rightarrow \Delta$ has a (cut-free) PK proof

* We will assume = not in Language for now

Derivational Completeness Theorem
Let Φ be a set of sequent or formulas such that the sequent $\Gamma \rightarrow \Delta$ is a logical consequence of $\forall \Phi$.
Then there is an $L K-\Phi$ proof of $\Gamma \rightarrow \Delta$.

Proof follows from Completeness Lemma (simitar to derivational completeness of PK from (completeness)

Proof of LK completeness Lemma
High Level idea (assume Φ is empty for Now)

- As in PK completeness, we want to construct on LK proof in reverse.
- Start isth $r \rightarrow \Delta$ at root, and apply rules in reverse cto break up a formula into one or 2 smaller ones)
- Tricky rules are right + $\forall l e f t$. When applying one of these in reverse, Need to "guess" a term

New Logical Rules for \forall, \exists
\forall-left $\quad \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \quad \forall$-Right $\quad \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall \times A(x)}$

Heft $\quad \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \quad \exists$-right $\quad \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists \times A(x)}$

* Att are proper
* b is a free variable Not appearing in cower sequent of rule

Proof of LK completeness Lemma
High Level idea (assume Φ is empty for Now)

- As in PK completeness, we want to construct an $L K$ proof in reverse.
- Start inst $r \rightarrow \Delta$ at root, and apply rules in reverse Pto break up a formula into one or 2 smaller ones)
- Tricky rules are $\exists r i g h t+\forall l e f t$. when applying one of these in reverse, Need to "guess" a term
- Key is to systematically try all possible terms - without going down a rabbit hole.

Example of an LK proof

Example of an LK proof
$P a_{1} Q_{a} \rightarrow P b$

$$
\begin{aligned}
& \frac{P_{a} \wedge Q_{a} \rightarrow P_{b}}{P_{a} \wedge Q_{a} \rightarrow \exists x^{\prime} P_{x}} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{aligned} \frac{P_{a} \wedge Q_{a} \rightarrow \exists_{x} Q_{x}}{\exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x} \wedge \exists_{x}}
$$

Instead:
(i)

$$
\begin{aligned}
& P_{a}, Q_{a} \rightarrow P_{b}, \exists_{x} P_{x} \\
& \xi \\
& \mathrm{~Pa}_{\mathrm{a}} \wedge \mathrm{Qa}_{a} \rightarrow \mathrm{~Pb}, \exists \times \mathrm{Px}_{x} \\
& \begin{array}{ll}
P_{a \wedge} \wedge Q_{a} \rightarrow \exists x y x
\end{array} \quad \begin{array}{l}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{array} \quad \begin{array}{ll}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} Q_{x}
\end{array} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow Z_{x} P_{x} \wedge \exists x Q_{x}
\end{aligned}
$$

Instead

Try
again $P a, Q a \rightarrow P b_{1} \exists x P_{x}$
$\}$

$$
\begin{aligned}
& P_{a} \wedge Q_{a} \rightarrow P b, \exists x P_{x} \\
& \begin{array}{ll}
P_{a} \wedge Q_{a} \rightarrow \exists x_{x}
\end{array} \quad \begin{array}{l}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{array} \quad \begin{array}{ll}
& Q_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} Q_{x}
\end{array} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x} \wedge \exists x Q x
\end{aligned}
$$

Instead
and again
and $P a, Q a \rightarrow P b, P f a, P F b, \exists x P_{x}$ again

Completeness: Proof search Algonthm
Enumeration of formulas + terms:
Since the number of underlying symbols of \mathcal{L} is finite, there is an enumeration of pairs $\left\langle A_{1}, t_{1}\right\rangle,\left\langle A_{2}, t_{2}\right\rangle,\left\langle A_{3}, t_{3}\right\rangle, \ldots$. such that every term and every formula in \mathcal{L} occur infinitely often in the enumeration
more details of enumeration (\mathscr{L} finite)
Enumerate all \mathcal{L}-formulas A_{1}, A_{2}, \ldots
Enumerate " \mathcal{L}-terms t_{1}, \ldots
such that even formula/term occurs infinitely often

Enumerate all pairs to have same property

Completeness: Proof search Algonthm
Start with $\Phi=$ set of sequents/formulas, $\quad \Gamma \rightarrow \Delta$
Want an algoninm that will output an Φ LK prof of $\Gamma \rightarrow A$
whenever
$\Phi \in \Gamma \rightarrow \Delta$ Whenever $\Phi \Leftarrow \Gamma \rightarrow \Delta$

- Initially π is the sequent $\Gamma \rightarrow \Delta$
- At each stage, modify π by adding some $A_{i} \in \Phi$ to antecedent of all sequents in Π, and adding outs the "frontier" or "active" sequents in π.
- Active sequent: a leaf sequent in Π, not a weakening of $A \rightarrow A$
- at stage k : we will use the $k^{\text {th }}$ pair $\left\langle A_{k}, t_{k}\right\rangle$ in the enumeration

Completeness: Proof search Algonthm
Stage K: $:\langle A, t\rangle_{k}$
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in Π by $\Gamma^{\prime} A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otherwise for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.

Completeness: Proof search Algonthm
Stage K:
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in Π by $\Gamma^{\prime}, A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otheriulse for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.

Examples:

- $A_{k}=\exists \times B x$

$$
\frac{\Gamma, B(C) \rightarrow \Delta}{\Gamma, \exists \times B(x) \rightarrow \Delta}
$$

$$
\frac{\Gamma \rightarrow \Delta, \exists \times B(x), B\left(t_{k}\right)}{r \rightarrow \Delta, \exists x B(x)}\left\{\begin{array}{c}
\text { keep both } \\
\text { here }
\end{array}\right\}
$$

Completeness: Proof search Algonthm
Stage K:
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in π by $\Gamma^{\prime}, A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otherwise for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.
Examples:

- $A_{k}=\forall x B(k)$

$$
\begin{aligned}
& \Gamma \rightarrow \Delta, B(c) \leftarrow \\
& \Gamma \rightarrow \Delta, \forall x B(x) \\
& \Gamma, \forall x B(x) \rightarrow \Delta
\end{aligned}
$$

Exit when wo more active sequents

Proof of Correctness
We want to show:

- If slgonithm halts, Π is an $L K-\Phi$ proof of

$$
n \rightarrow \Delta
$$

- If Algorithm never halts, then

$$
\forall \Phi \not \Gamma \rightarrow \Delta
$$

Show: If our algonthm halts when run on $\phi, \Gamma \rightarrow \Delta$ then it produces a $\Phi-L K$ "proof' of $r \rightarrow \Delta$

What isl prog thee look dike if inly halts?

Proof of correctness
We want to show: If Algorithm never halts, then $\Phi * \Gamma \rightarrow \Delta$ for if traits but some (e sse contain some formula A)
suppose Algorithm doesn't halt and let π be the (typically infinite) tree that results
Leaf "sequent" of π look like $\Gamma_{1}^{\prime}, \underbrace{c_{1}, c_{2}, \ldots}_{1} \rightarrow \Delta^{\prime}$. infinite sequence containing all of Φ each infinitely often
Find a bad path β in the tree:
If π finite, \exists some active leaf Node containing only atomic formulas. Choose β to be path from root to this leaf

Proof of Correctness
we want to show: If Algorithm never halts, then $\forall \Phi \Gamma^{\Gamma} \rightarrow \Delta$
Find a bad path β in the tree:
If π finite, 3 some active leaf Node containing only atomic formulas. Choose β to be path from root to this leaf
If π infinite by Körig's Lemma, \exists an infinite path. Let β bethis path

Proof of Correctness
Properties of β
(1) β is a path starting at root
(2) all sequents in β were once active
(3) for all sequents in β, no formula occurs on both the Left and right side of sequent
(4) all atomic formulas $A \in \Phi$ in root sequent of $\boldsymbol{\beta}$ on LEFT, and thus occur on LEFT of all sequent in $\boldsymbol{\beta}$

By (3)+(4), we know that no atomic $A \in \Phi$ occurs on the Right of any sequent in β

Proof of correctness (cont ${ }^{\prime} d$)
We will construct a "term" model $9 M$, object assignment 6 from β such that $9 \eta \nsubseteq[6]$ but $m \cap \Gamma \rightarrow \Delta$ (and thus our algorithm fails to halt + produce a proof only when $\Gamma \rightarrow \Delta$ is not a logical consequence of Φ.)

Let M (univise) be all forms one \mathcal{L}
Ne thing is then our interpretation of all functions ts natural: If we have a term
f : pars 8 unsure elemis \rightarrow under element

$$
f(\overline{s 1}, \overline{s s s 1})=\overline{f_{s \mid s s s 1}}
$$

Proof of correctness (cont ${ }^{\prime} d$)
We will construct a "term" model $9 M$, object assignment 6 from β such that $9 \eta \nsubseteq[6]$ but $M \quad \Gamma \rightarrow \Delta$
Universe M : all \mathcal{L}-terms t (containing only free vars)
6 : map vanable a to itself $(b(a)=\bar{a})$

$$
f^{d n}\left(\bar{r}_{1} \ldots \bar{r}_{k}\right) \stackrel{d}{f} \overline{f r_{1} \ldots r_{k}}
$$

$P^{\text {an }}\left(r_{1} \ldots r_{k}\right) \stackrel{d}{=}$ true if and only if $P r_{1} \ldots r_{k}$ is on the LEFT of some sequent in β

Proof of correctness (contd)
Claim: For every formula A,
M, 6 satisfies A iff A is on the LEFT of some sequent in β, and
an, σ falsifies A iff A s on the RIgHT of some sequent in β

Proof of correctness (contd)
Claim: For every formula A,
OM, 6 satisfies A iff A is on the LEFT of some sequent in β, and
m, σ falsifies A iff A s on the RigHT of some sequent in β
Proof (induction on A)
A atomic: A cannot occur
on LEFT of some sequent in β and on RIgHT of some sequent in β (since A persists up β)

Proof of correctness (contd)
Claim: For every formula A,
OM, 6 satisfies A iff A is on the LEFT of some sequent in β, and
$90, \sigma$ falsifies A iff A s on the RIgHT of some sequent in β
Proof (induction on A)
Induction step Example $A=\exists x B(x)$ on RIgHT
high level: if A occurs in some sequent in β, then A persists upward until it becomes the active formula (at stage $K, A_{k}=A$) then use inductive hypothesis

Proof of correctness (contd)
Claim: For every formula A,
$m, 6$ satisfies A iff A is on the LEFT of some sequent in β, and
$m_{1} \sigma$ falsifies A iff A s on the RIgHT of some sequent in β
Proof (induction on A)
Induction step $A=\exists x B(x)$ on R Lg ht
By Ind hyp, $M, 6$ falsify $B\left(t_{j}\right)$
Since $\exists x B(x)$ persists, we have $\forall t$ $B(t)$ on RigHT of some sequent in β
Thus om, 6 falsify $B(t)$ for all terms t

Test on vednesday
~ 4 questions
\rightarrow Satisfiable, Valid/Tautolgy, UNSAT $] \operatorname{shot}$ ansuer
\rightarrow Proof syskems Resoution, a PK
completeness (for both
Implicational conplexeexes pr PK
\rightarrow compactress I

\rightarrow Definitions, key Therems $]$ short ansuen

