Last Class:

1. Intro
2. Propositional Logic
syntax / semantics
Resolution: proof system for propositional logic

- soundness
- completeness

Last Class:

1. Intro
2. Propositional Logic
syntax / semantics
Resolution: proof system for propositional Logic

- soundness
- completeness

Pages $1-9$ of Lecture Notes, plus supplementary notes on Resolution

Today

- Finish Resolution
- Another proof system for propositional logic: PK soundness of PK
completeness of PK
- Propositional Compactness Theorem
- Derivational soundress/Completeners of PK Pages 9-17 of Lecture Notes

Definitions (From last class)
τ satisfies A iff $A^{\top}=T$
τ satisfies a set Φ of formulas of
τ satisfies A for all $A \in \Phi$
ϕ is satisfiable iff $\exists \tau$ that safisfils Φ otherwise Φ is unsatis friable
$\phi \equiv A \quad(A$ is a logical consequence of $\Phi)$ eff $\forall \tau[\tau$ satisfies $\Phi \Rightarrow \tau$ satisfies $A]$
$E A \quad(A$ is valid or A is a tautology). Af $\forall \tau[\tau$ satisfies $A]$

Resolution: Proof System for Prop Logic

- Resolution is basis for most automated theorem provers
- Proves that formulas are unsatisfiable (recall F is a tautology iff $2 F$ is valid)
- Formulas have to be in a special form: CNF

$$
\underbrace{\left(x_{1} \vee\left(x_{2} \vee \bar{x}_{3}\right)\right)}_{c_{1}} \wedge \underbrace{\left(\left(\bar{x}_{2} \vee x_{4}\right)\right.}_{c_{2}} \wedge \underbrace{\left(\left(\bar{x}_{4}\right)\right.}_{c_{3}} \wedge \underbrace{\left(\left(x_{1} \vee x_{3}\right)\right.}_{c_{2}} \wedge(\underbrace{\left.\left.\left.x_{1}\right)\right)\right)}_{c_{5}})
$$

Converting a formula to CNF

- Obvious method (deMorgan) could result in an exponential blowup in size

Example $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right) \vee \ldots()$

- Better method: SAT THEOREM

There is an efficient method to transform any propositional formula F into a CNF formula g such that F is satisfiable if g is satisfiable

SAT THEOREM: Proof by example

$$
\begin{aligned}
& F: \underbrace{\underbrace{(Q \wedge R)}_{P_{B}} \vee \neg Q}_{P_{A}} \\
& g:\left(P_{B} \Leftrightarrow(Q \wedge R)\right) \wedge\left(P_{A} \Leftrightarrow P_{B} \vee \neg Q\right) \wedge\left(P_{A}\right) \\
& \left(\neg P_{B} \vee Q\right)\left(\neg P_{B} \vee R\right)\left(\neg Q \vee \neg R \vee P_{B}\right)
\end{aligned}
$$

Demorgan's Rules to push Negations to learesi

Theorem Let f be a formula of size m (m leaves) with n variables $x_{1} \ldots x_{n}$. Then there exists an equivalent 3CNF formula g with $0(m)$ variables and size $O(m)$

Example

$g: \quad\left(y_{1}\right) \wedge$
$\left(y_{1}\right)$

$$
\begin{array}{cc}
\left(y_{1} \leftrightarrow y_{2} \vee y_{3}\right) \wedge \\
\left(y_{2} \leftrightarrow y_{4} \wedge y_{5}\right) \wedge \\
\left(y_{3} \leftrightarrow \neg x_{3} \wedge y_{6}\right) \wedge & \Leftrightarrow \\
\left(y_{4} \leftrightarrow y_{1} \wedge x_{4}\right) \wedge & \left(\neg y_{1} \vee y_{2} \vee y_{3}\right)\left(\neg y_{2} \vee y_{1}\right)\left(\neg y_{3} \vee y_{1}\right) \\
\left(y_{5} \leftrightarrow \neg x_{2} \vee x_{5}\right) \wedge & \vdots\left(\neg y_{2} \vee y_{5}\right)\left(\neg y_{4} \vee y_{5} \vee y_{2}\right) \\
\left(y_{6} \leftrightarrow x_{1} \vee x_{4}\right) \wedge & \vdots \\
\left(y_{7} \leftrightarrow \neg x_{1} \vee x_{5}\right) & \left(\neg y_{7} \vee \neg x_{1} \vee x_{5}\right)\left(x_{1} \vee y_{7}\right)\left(\neg x_{5} \vee y_{7}\right)
\end{array}
$$

RESOLUTION
Start with CNF formula $F=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ view F as a set of clauses $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$

Resolution Rule:

$$
(A \vee x),(B \vee \bar{x}) \text { derive }(A \vee B)
$$

A Resolution Refutation of F is a sequence of clauses $D_{1}, D_{2}, \ldots, D_{q}$ such that: each D_{i} is either a clause from $F_{\text {, or }}$ follows from 2 previous clauses by Resolution rule, and final clause $D_{q}=\phi$ (the empty clause)

Resolution Refutation

$$
F=(a \vee b \vee c)(a \vee \bar{c})(\bar{b})(\bar{a} \vee d)(\bar{d} \vee b)
$$

a clause C is derived from a set D of clauses if \exists a sequence of cloves D_{1}, \ldots, D_{m}
st. (1) Each D_{i} is either $\epsilon \varnothing$ or follows from 2 previous $D_{i^{\prime \prime}} D_{L^{\prime \prime}} \quad i_{1}^{\prime \prime} L^{\prime \prime}<i$ clauses by the Res rule
(2) D_{m} is C

If $c=\phi$ (the empty clause) is derivable from ϕ then ϕ has a Res refutation

Resolution Soundness
Fact: If c_{1}, c_{2} derive c_{3} by Resolution rule, then $c_{1}, c_{2} \vDash c_{3}$

From above fact we can prove:
Resolution soundness tel EOKEM
If a CNF formula F has a RES refutation, then F is unsatisfiable

RESOLUTION COMPLETENESS THY
Every UNSatisfiable CNF formula F has a Resolution refutation

Proof idea
WC describe a canonical procedure for obtaining a RES refutation for F

The procedure exhaustively tries all truth ass's - via a decision free then we shaw that any such decision tree can be rewed as a RES refutation

$$
\begin{aligned}
& =\text { Resolution Refutation } F=(a \vee b \vee c)(a \vee \bar{c})(\bar{b})(\bar{a} \vee d)(\bar{d} v b) \\
& (a \vee b),(\bar{b}) \\
& (a \vee b v c)(\bar{b})(\bar{a})
\end{aligned}
$$

COMPLEXITY OF RESOLUTION REFUTATIONS
Let Π be a RES refutation of CNF F over $x_{1} \ldots x_{n}$ $\operatorname{SIZEC}(\pi)=$ Number of clauses in π
π is tree-like if directed acyclic graph cignoring initial clauses of F) is a tree
upper bound: size $(\pi) \leqslant 2^{n}$ Why?
Lower bound: Are there uwsat formulas $\left\{F_{n}\right\}_{n \geqslant 1}$ requiring exponential-sized RES proofs?

