Welcome to CS 4995 : Computability and Logic

Instructor: Toniann Pitassi (Toni)
TA: Oliver Korten
webpage :
www. cs. columbia.edu/~toni/Courses/Logic2021/4995.html
Email: toni@cs.columbia.edu

Contents

- Research
- Publications
- Talks
- Teaching
- Students and Postdocs

Brief Bio

I received bachelors and masters degrees from Pennsylvania State University and then received a PhD from the University of Toronto in 1992. After that, I spent 2 years as a postdoc at UCSD, and then 2 years as an assistant professor (in mathematics with a joint appointmer in computer science) at the University of Pittsburgh. For the next four years, I was a faculty member of the Computer Science Department the University of Arizona. In the fall of 2001, I moved back to Toronto, as Professor in the Computer Science Department, with a joint appointment in Mathematics. In 2021 I joined the Department of Computer Science at Columbia University.

The above picture was taken in London in front of Bertrand Russell's flat. If you click on the picture to see an enlarged version, and then ge to the upper right quadrant, the blue sign mentioning this landmark will be legible.

Contents

- Research
- Publications
- Talks
- Teaching
- Students and Postdocs

Teaching

CS4995F Logic and Computability, 2021
CSC2541F AI and Ethics: Mathematical Foundations and Algorithms
CSC2429 Proof Complexity, Mathematical Programming and Algorithms, Winter 2018
CSC165 Mathematical Expression and Reasoning for Computer Science, Winter 2018
CS2429 Proof Complexity, 2017
CSC 263 Data Structures and Analysis, Fall 2015
CSC2401 Introduction to Complexity Theory, Fall 2015
CSC 2429 Communication Complexity: Applications and New Directions, Fall 2014
CSC 2429 Approaches to the P versus NP Problem and Related Complexity Questions, Winter 2014
CSC 2429 Communication Complexity, Information Complexity and Applications, Fall 2013
CSC 2429 Foundations of Communication Complexity, Fall 2009
CSC 2402 Methods to Deal with Intractability, Fall 2009
CSC 2429 PCP and Hardness of Approximation, Fall 2007
CSC 448/2405 Formal Languages and Automata, Spring 2006
CSC 448/2405 Formal Languages and Automata, 2005
CSC 448/2405 Formal Languages and Automata, 2003
CSC 2416 Machine Learning Theory, Fall 2005
CSC 364 Computability and Complexity, Fall 2002
CSC 2429 Propositional Proof Complexity, Fall 2002
CSC 2429 Derandomization. Spring 2001

CS 4995: Computability and Logic

 Fall, 2021ANNOUNCEMENTS: (Students, please check for announcements every week.)
Posted Sept 13: Welcome to the class! Stay tunes for more announcements.

COURSE TIMES, CONTACT INFO
Instructor: Toniann Pitassi, email: toni@cs.columbia.edu
Office Hours: Monday 4-5pm
Lectures: MW 2:40-3:55, 415 Shapiro
TA: Oliver Korten

- Course Information Sheet

HOMEWORK ASSIGNMENTS:

- Homework 1, Due Sept 27

EXAM INFORMATION:

GRADES AND MARKING:

LECTURE NOTES:

- Week 1
- Week 2

COURSE NOTES:

- Propositional Calculus
- Predicate Calculus
- Completeness
- Herbrand, Equality, Compactness
- Computability
- innnminatamace

CS 4995 - Fall 2021

Logic and Computability

Lectures: Monday/Wednesday 2:40-3:55, 415 Shapiro
Instructor: Toniann Pitassi, toni@cs.columbia.edu
Office hours: Monday 4-5
TA: Oliver Korten
Web Page: http://www.cs.columbia.edu/utoni/Courses/Logic2021/4995.html
Course Notes: Postscript files for course notes and all course handouts will be available on the web page.

Topics:

Propositional logic: syntax and semantics, Resolution and Propositional Sequent Calculus soundness and completeness. First order logic: syntax and semantics, First Order Sequent Calculus soundness and completeness. Godel's Incompleteness theorems. Computability: Recursive and recursively enumerable functions, Church's thesis, unsolvable problems

Marking Scheme:

3 assignments (each worth 20% of final grade)
First Term test (20% of final grade)
Second Term Test (20% of final grade)

Due Dates:

To be announced

The work you submit must be your own. You may discuss problems with each other; however, you should prepare written solutions alone.

Important
\rightarrow All lectures are mandatory.
check course Works -- some lectures may be held online via zoom.
\rightarrow Work hard on understanding lecture notes, work hard on assignments
\rightarrow start early - cannot cram / solve in a couple of days
\rightarrow Come to office hrs!

- Homeworks must be written up independently. You may discuss with other students in class but NO outside people/soures allowed.

COURSE INTRO
Foundations of mathematics involves the axiomatic method - write down axioms (basic truths) and prove theorems from axioms from purely logical reasoning

Example 1 Euclidean geometry (300 BC, "Elements")

The School of Athens, Rafael

Axiomatic system where all theorems are derivable from a small number of simple axioms/postulates

Postulate 5

If sum of $\alpha+\beta$ is <180 then the 2 lines (blue yellow) eventually meet (on same side as α, β angles)

Euclid's Postulates

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
5. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. This postulate is equivalent to what is known as the parallel postulate.

Euclid's fifth postulate cannot be proven as a theorem, although this was attempted by many people. Euclid himself used only the first four postulates ("absolute geometry") for the first 28 propositions of the Elements, but was forced to invoke the parallel postulate on the 29th. In 1823, Janos Bolyai and Nicolai Lobachevsky independently realized that entirely self-consistent "non-Euclidean geometries" could be created in which the parallel postulate did not hold. (Gauss had also discovered but suppressed the existence of non-Euclidean geometries.)

SEE ALSO:

Absolute Geometry, Circle, Elements, Line Segment, Non-Euclidean Geometry, Parallel Postulate, Pasch's Theorem, Right Angle

REFERENCES:

Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, pp. 88-92, 1989.

Referenced on Wolfram|Alpha: Euclid's Postulates

CITE THIS AS:

Weisstein, Eric W. "Euclid's Postulates." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EuclidsPostulates.html

Example z-group Theory (Cayley, 1854)
axiom 1: $\quad \forall x y z[x \cdot(y \cdot z)=(x \cdot y) \cdot z] \quad$ (associativity) axiom z: $\exists u$

$$
\begin{aligned}
& {[\forall x[x \cdot u=u \cdot x=u]} \\
& \forall x \exists y[x \cdot y=y \cdot x=u]\}
\end{aligned}
$$

there exists an identity element and every element has an inverse

A group is a model for the axioms $(g,-\quad)$ a function from $g_{\times} g \rightarrow g$

Examples of groups
(1) $g=\mathbb{Z}$ (the integers) $\quad=$ addition

Examples of groups
(1) $g=\mathbb{Z}$ (the integers) $\quad=$ addition
(2) Rubik's cube group

$g=$ all possible moves moves

- = composition of moves

Course Outline
We will study FIRST ORDER LOgic (PREDICATE LOGK)
I. Start with simpler PropositionAL Logic (no quantifiers)

- Language of propositional Logic ("syntax")
- Meaning
("semantics")
- Two proof systems for prop. Logic: Resolution, and PK
- We will prove soundness + COMPLETENESS for both

Course outline (cont'd)
II. FIRST ORDER (PREDICATE) LOGIC

- Language ("syntax")
- meaning ("semantics")
- Proof system LK (extends PK) SOUNDNESS
** COMPLETENESS
MaJor corollaries of completeness

COURSE OUTLINE (confld)
III. computability
IV. Axiomatizable Theories

Incompleteness Theorems Interplay/connections between computability + Logic

PROPOSITIONAL LOGIC

Vocabulary: $P_{1}, P_{2}, Q, \ldots \quad$ propositional variables

$$
\neg, \vee, \wedge,(,)
$$

Examples: $((P \vee Q) \vee R)$

$$
(\neg P \vee \neg Q)
$$

PROPOSITIONAL LOGIC
Inductive Definition of a Propositional Formula

1. Atoms/Propositional variables: P_{1}, P_{2}, \ldots are formulas
2. If A is a formula, then so is $\urcorner A$
3. If A, B are formulas, so is $(A \wedge B)$
4. " " " " $(A \vee B)$
$(A \supset B)$ is shorthand for $(\neg A \vee B)$
$(A \leftrightarrow B)$ is shorthand for $(\neg A \vee B) \wedge(\neg B \vee A)$
A subformula of a formula is any substring of A which itself is a formula

Unique Readability Thm says the grammar for generating formulas is Not ambiguous

Semantics
A truth assignment $\tau:$ \{atoms $\} \rightarrow \mathbb{T}, F$ Extending τ to every formula:
(1) $(\neg A)^{T}=T$ iff $A^{T}=F$
(2) $(A \wedge B)^{T}=T$ ff $A^{T}=T \wedge B^{T}=T$
(3) $(A \cup B)^{T}=T$ iff either $A^{T}=T$ or $B^{T}=T$

Example

Definitions
τ satisfies A iff $A^{\tau}=T$
τ satisfies a set Φ of formulas of
τ satisfies A for all $A \in \Phi$
ϕ is satisfiable iff $\exists \tau$ that satisfies Φ otherwise Φ is unsatisfiable
$\phi \equiv A \quad(A$ is a logical consequence of $\Phi)$ eff $\forall \tau[\tau$ satisfies $\Phi \Rightarrow \tau$ satisfies $A]$
$E A \quad(A$ is valid or A is a tautology). Af $\forall \tau[\tau$ satisfies $A]$

Examples

1. $(A \wedge B)=(A \vee B)$
2. $\vDash(A \vee \neg A)$
3. $\{(A \vee B),(\neg A \vee B)\} \vDash B$
4. $A \cup B \neq B$

Some easy facts (check them)

1. If $\Phi \vDash A$ and $\Phi u\{A\} \vDash B$ then $\Phi \vDash B$
2. $\Phi \vDash A$ iff $\Phi \cup\{n A\}$ is unsatisfiable
3. A is a tautology iff $1 A$ is unsatisfiable

Equivalence
A and B are equivalent (written $A \Leftrightarrow B$) if $A \not B$ and $B \neq A$

Examples

1. $(A \wedge B) \stackrel{?}{\Leftrightarrow}(B \wedge A)$
2. $(\neg A \vee B) \stackrel{?}{\Leftrightarrow}(\neg B \vee A)$

Resolution: Proof System for Prop Logic

- Resolution is basis for most automated theorem provers
- Proves that formulas are unsatisfiable (recall F is a tautology iff $2 F$ is valid)
- Formulas have to be in a special form: CNF

$$
\underbrace{\left(x_{1} \vee\left(x_{2} \vee \bar{x}_{3}\right)\right)}_{c_{1}} \wedge \underbrace{\left(\left(\bar{x}_{2} \vee x_{4}\right)\right.}_{c_{2}} \wedge \underbrace{\left(\left(\bar{x}_{4}\right)\right.}_{c_{3}} \wedge \underbrace{\left(\left(x_{1} \vee x_{3}\right)\right.}_{c_{2}} \wedge(\underbrace{\left.\left.\left.x_{1}\right)\right)\right)}_{c_{5}})
$$

Converting a formula to CNF

- Obvious method (deMorgan) could result in an exponential blowup in size

Example $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right) \vee \ldots()$

- Better method: SAT THEOREM

There is an efficient method to transform any propositional formula F into a CNF formula g such that F is satisfiable if g is satisfiable

SAT THEOREM: Proof by example

$$
\begin{aligned}
& F: \underbrace{\underbrace{(Q \wedge R)}_{P_{B}} \vee \neg Q}_{P_{A}} \\
& g:\left(P_{B} \Leftrightarrow(Q \wedge R)\right) \wedge\left(P_{A} \Leftrightarrow P_{B} \vee \neg Q\right) \wedge\left(P_{A}\right) \\
& \left(\neg P_{B} \vee Q\right)\left(\neg P_{B} \vee R\right)\left(\neg Q \vee \neg R \vee P_{B}\right)
\end{aligned}
$$

