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Brief Bio

| received bachelors and masters degrees from Pennsylvania State University and then received a PhD from the University of Toronto in
1992. After that, | spent 2 years as a postdoc at UCSD, and then 2 years as an assistant professor (in mathematics with a joint appointmer
in computer science) at the University of Pittsburgh. For the next four years, | was a faculty member of the Computer Science Department
the University of Arizona. In the fall of 2001, | moved back to Toronto, as Professor in the Computer Science Department, with a joint
appointment in Mathematics. In 2021 | joined the Department of Computer Science at Columbia University.

The above picture was taken in London in front of Bertrand Russell's flat. If you click on the picture to see an enlarged version, and then gc
to the upper right quadrant, the blue sign mentioning this landmark will be legible.
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CS 4995: Computability and Logic

ANNOUNCEMENTS: (Students, please check for announcements every week.)

Posted Sept 13: Welcome to the class! Stay tunes for more announcements.

COURSE TIMES, CONTACT INFO

Instructor: Toniann Pitassi, email: toni@cs.columbia.edu
Office Hours: Monday 4-5pm
Lectures: MW 2:40-3:55, 415 Shapiro

TA: Oliver Korten

Course Information Sheet

HOMEWORK ASSIGNMENTS:

Homework 1, Due Sept 27

EXAM INFORMATION:

GRADES AND MARKING:

LECTURE NOTES:

Week 1
Week 2

COURSE NOTES:

Propositional Calculus

Predicate Calculus

Completeness

Herbrand, Equality, Compactness
Computability

Fall, 2021

Inscamnlatanace |
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CS 4995 — Fall 2021
Logic and Computability

Lectures: Monday/Wednesday 2:40-3:55, 415 Shapiro

Instructor: Toniann Pitassi, toni@cs.columbia.edu

Office hours: Monday 4-5

TA: Oliver Korten

Web Page: http://www.cs.columbia.edutoni/Courses/Logic2021/4995.html

Course Notes: Postscript files for course notes and all course handouts will be available
on the web page.

Topics:

Propositional logic: syntax and semantics, Resolution and Propositional Sequent Calculus
soundness and completeness. First order logic: syntax and semantics, First Order Sequent
Calculus soundness and completeness. Godel’s Incompleteness theorems. Computability:
Recursive and recursively enumerable functions, Church’s thesis, unsolvable problems

Marking Scheme:

3 assignments (each worth 20% of final grade)
First Term test (20% of final grade)

Second Term Test (20% of final grade)

Due Dates:

To be announced

The work you submit must be your own. You may discuss problems with each other; however,
you should prepare written solutions alone.
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Euclid's Postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far enough. This postulate is equivalent to what is known as the parallel postulate.

Euclid's fifth postulate cannot be proven as a theorem, although this was attempted by many people. Euclid himself used only the first four postulates
("absolute geometry") for the first 28 propositions of the Elements, but was forced to invoke the parallel postulate on the 29th. In 1823, Janos Bolyai and
Nicolai Lobachevsky independently realized that entirely self-consistent "non-Euclidean geometries" could be created in which the parallel postulate did not
hold. (Gauss had also discovered but suppressed the existence of non-Euclidean geometries.)

SEE ALSO:
Absolute Geometry, Circle, Elements, Line Segment, Non-Euclidean Geometry, Parallel Postulate, Pasch's Theorem, Right Angle

REFERENCES:
Hofstadter, D. R. Godel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, pp. 88-92, 1989.

Referenced on Wolfram|Alpha: Euclid's Postulates

CITE THIS AS:
Weisstein, Eric W. "Euclid's Postulates." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EuclidsPostulates.html
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Examples of  qoups
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(® Rubik's cube Yroup

Basic 90° 180° -90°
Fturns the front clockwise F? turns the front clockwise twice F' turns the front counter-clockwise
B turns the back clockwise B? turns the back clockwise twice B’ turns the back counter-clockwise
U turns the top clockwise U? turns the top clockwise twice U’ turns the top counter-clockwise

D turns the bottom clockwise | D? turns the bottom clockwise twice | D' turns the bottom counter-clockwise
L turns the left face clockwise | L? turns the left face clockwise twice | L’ turns the left face counter-clockwise <\

R turns the right face clockwise R? turns the right face clockwise twice | R’ turns the right face counter-clockwise
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Course Outline (cont'd)
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PRoPosITIONAL Logic
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PRoPosITIONAL Logic
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Equivalence

A and B are equumlent (wrHen Aé)B)

Examples
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SAT THEOEEM : prook by example

F: (QaR)V @

\_/VN
P, <—— Mew varakles
-
— <

4 (@) n (e 79 4 (7)

("Pav@ Gl ) (n@ve v T, )



