
CS Theory (Fall ’25) Assigned: Sept 9, 2025

Homework 1 Solutions

Instructors:Toniann Pitassi and William Pires Due: Sept 18, 2025 at 11am

Collaboration: Collaboration with other students in the class homework is allowed. However, you must
write up solutions by yourself and understand everything that you hand in. You may also consult other
reference materials, but you may not seek out answers from other sources or use AI tools. You are
required to list who you collaborated with on each problem, including any TAs or students
you discussed the problems with in office hours. Also list any reference materials consulted
other than the lectures and textbook for our class. See the course webpage for more details.

Formatting: Write the solution to each part of each problem on a separate page. Be sure to correctly
indicate which page each problem appears on in GradeScope. Please do not write your name on any page
of the submission; we are using anonymous grading in GradeScope.

Grading: There are 80 total possible points, not including the Bonus problem which is optional and for
extra credit. For all problems except for the Bonus problem, you have the option of answering “Don’t
know” on any parts of the question, and you will receive 20 percent of the total marks for those parts.

0 Exercises

Here are some recommended exercises. You should not turn in your solutions for these, and we will not
grade them.

(a) From the Sipser textbook: Exercises 1.1, 1.2, 1.3, 1.5 (a,c)

(b) 1.6 (b,c,k)

(c) 1.7 (a,c)

(d) Are the following languages regular or not? (Just say ”yes” or ”no”. Later we will show how to prove
that a language is not regular.)

• L = {w | w = wR} (Notation: wR is the string w written in reverse. For example if w = 1101000
then wR = 0001011.)

• L = {0n | n is even}
• L = {0n1m0n | m,n ≥ 2}

(e) Draw an NFA using 5 states or less for the language L over Σ = {0, 1, 2} where:

L = {w | w contains the substring 210}.

(a) Solutions for 1.1, 1.2, and 1.5(a) are in the back of the book, starting on page 94.

1

• Solution for 1.3:

q3start

q2 q1

q4 q5

u

d

u

d

u

d

u d

u

d

Figure 1: DFA for exercise 0(a) problem 1.3.

• Solution for 1.5c: The complement for the language L = {w | w contains neither the substrings ab nor ba}
is L = {w | w contains the substrings ab or ba}. Figure 2 shows a DFA for the complement L.

qinitstart

qa

qb

qab or ba

a

b

a

b

b

a

a, b

Figure 2: DFA for L for exercise 0(a) problem 1.5(c).

The intuition for constructing this DFA is that before seeing the substring ab or ba, the DFA
will have read in only a’s or only b’s. Therefore we can use the states qa and qb to keep track of
which character has been seen, then transition to qab or ba once both characters have been seen.

The DFA for L can easily be constructed by taking the DFA for L and switching the accept and
reject states, as seen below in 3.

2

qinitstart

qa

qb

qab or ba

a

b

a

b

b

a

a, b

Figure 3: DFA for L for exercise 0(a) problem 1.5(c).

(b) • Solution for 1.6(b): A DFA recognizing L = {w | w contains at least three 1s} is the following.

q0start q1 q2 q≥3

0 0 0 0, 1

1 1 1

Figure 4: DFA for exercise 0(b) problem 1.6(b).

• Solution for 1.6(c): A DFA recognizing L = {w | w contains the substring 0101} is the following.

qinitstart q0 q01 q010 q0101

1

0

0

1 0

1

0

1

0, 1

Figure 5: DFA for exercise 0(b) problem 1.6(c).

• Solution for 1.6(k): A DFA recognizing L = {ϵ, 0} is the following.

3

qϵstart q0

qtrash

0

1
0, 1

0, 1

Figure 6: DFA for exercise 0(b) problem 1.6(k).

(c) See solution in the back of the Sipser textbook for 1.7(a).
Solution for 1.7(c): A NFA recognizing L = {w | w contains an even number of 0s, or contains exactly two 1s}
with six states is the following.

q0

q1

q3

q2

q4 q5

ϵ

ϵ

1

0

0

1

0

1

0

1

0

Figure 7: DFA for exercise 0(c) problem 1.7(c).

(d) • L = {w | w = wR} is NOT regular.

• L = {0n | n is even} is regular.

• L = {0n1m0n | m,n ≥ 2} is NOT regular.

(e) See figure 8 below.

4

qinitstart q2 q21 q210

0, 1, 2

2 1 0

0, 1, 2

Figure 8: NFA for exercise 0(e).

If the input string contains 210, the NFA can stay in the start state until it is about to read in the
210 part, after which it can transition q210, where it will stay and accept the string. If the input
string does not contain 210, the NFA will never reach q210 and therefore will reject.

1 Problems

Problem 1: A DFA with four states (20 points)

Let D denote the following DFA over the alphabet {a, b, c}.

(a) Write out the formal definition of D (as a 5-tuple). Describe the transition function in a table.

(b) What is the language recognized by D? Give a short English description, then explain in a paragraph
why your description is correct. Please give an explanation that is as short and simple as possible!

(a) States: Q = {q0, q1, q2, q3}.

5

Alphabet: Σ = {a, b, c}.
Transition function:

a b c

q0 q0 q1 q2
q1 q0 q1 q3
q2 q0 q1 q1
q3 q3 q3 q3

Start state: q0.

Accept states: F = {q3}.

(b) The language is L = {w | w contains the substring bc or ccc}.
Explanation: First we argue that any string containing bc or ccc as a substring is accepted. By
inspection, if we haven’t yet seen either the substring bc or ccc and the last symbol read is a then
we are in q0. Similarly if we haven’t yet seen either substring bc or ccc and the last symbol read is
b then we are in q1. Therefore if w = ubcv, we are in q1 after reading ub, and then move to q3 on c
and stay there. Thus any string containing bc as a substring is accepted. Now suppose bc doesn’t
occur as a substring, but ccc does. Then we can write q = ucccv where either u is empty, or the last
symbol of u is a (since if it was b, then bc would be a substring and if it was c then there is an earlier
occurrence of ccc.) In either case, we are in q0 after reading u, and then go to q3 after reading ccc,
and stay there. Thus we accept any string containing either the substring bc or ccc.

Conversely we want to show that D rejects all other strings. D accepts if and only if it is in state
q3 at some point (if we end up there, we will never leave). We can only get to q3 by being in q1 and
seeing c. If we are in q1, this means that we either came from q0, q1, or q2 and just saw b, or we came
from q2 and just saw c. In the first case, this means we saw the substring bc at some point. In the
second case, we can only get to q2 by seeing c, so we know that there were actually two consecutive
c’s at the step where we end up in q1.

Problem 2: Constructing DFAs and NFAs (30 points)

Give a DFA, either as a 5-tuple or by drawing the deterministic finite automata for the following languages.
No justification is required.

(a) Give a DFA for the language L over Σ = {0, 1} consisting of all strings not containing the substring
111.

(b) Draw an NFA for the language L over Σ = {0, 1, 2} where

L = {w | w has length divisible by 3 or w contains the symbol 2 exactly once }.

Your NFA should have 7 states or less.

(c) Give an NFA that accepts the set of all strings over Σ = {0, 1} with at least three symbols and such
that the third symbol from the right end is 1. Try to give an NFA with the minimal number of states.

6

q0start q1 q11 q111

0

1

0

1

0

1

0, 1

Figure 9: DFA for 2(a)

(a) The DFA in Figure 9 keeps track of how many consecutive 1’s have been read. The state q0 represents
the state of not having read any consecutive 1’s. The states q1, q11, and q111 represent having read
one, two, and three consecutive 1’s, respectively. All strings containing the substring 111 will reach
q111 and never leave, while strings not containing 111 will never be in q111.

qinitstart

q0 mod 3

q1 mod 3

q2 mod 3

qno 2 qone 2

ϵ

ϵ

0, 1, 2 0, 1, 2

0, 1, 2

0, 1

2

0, 1

Figure 10: NFA for 2(b)

(b) The NFA in Figure 10 nondeterministically guesses that the input string satisfies one of the two
conditions for L, and uses ϵ transitions to perform parallel branches of computation for the two
conditions. The “top” part of the NFA determines if the string has length divisible by 3; its states
keep track of the number of characters read so far modulo three. The “bottom” part determines if
the string contains exactly one 2 character; its states keep track of whether no 2’s or one 2 has been
seen. If a second 2 is seen, the computation terminates and the string is rejected.

7

qinitstart qs[−3]=1 qs[−2] qs[−1]

0, 1

1 0, 1 0, 1

Figure 11: NFA for 2(c)

(c) The NFA in Figure 11 can stay in the start state until it reads in its third to last character. If this
is 1, the NFA can transition to qs[−3]=1. Afterwards, the NFA reads in the remaining two characters
and arrives at the accept state qs[−1]. This is the only case where the NFA can reach the accept state.

8

Problem 3: An NFA (20 points)

Let D denote the following NFA over the alphabet {0, 1}.

• What is the language recognized by D. Give a short English description, then explain in a paragraph
why your description is correct. Please give an explanation that is as short and simple as possible!

At the start of its execution, D splits into the upper and lower branch. So, we’ll define the language
in two parts, L1 for the strings accepted by the upper branch and L2 for the strings accepted by the lower
branch.

The upper branch accepts when it goes to q2 and then to q3 with the last two bits of the in-
put. In order to get to q2 with the second-to-last bit, that bit must be 0. The last bit can be
anything. There can be any number of bits preceding the last two; the NFA can stay in q1 and re-
peatedly “guess” that it may be on the last two bits every time it sees a 0. Therefore, L1 = {w |
w has length at least two, and the penultimate bit is 0}. More formally, L1 = {w | |w| ≥ 2, w|w|−1 = 0}.

The lower branch accepts if and only if it doesn’t die (because both states are accept states). Therefore,
all we need to ensure that the lower branch accepts is to make sure that we always make it out of q4
by seeing a 0. We are in q4 every other bit, so we need all bits in odd positions to be 0. Therefore,
L2 = {w | all bits in odd positions are 0}. Slightly more formally, L2 = {w | w2k+1 = 0 for k ∈ Z≥0}.

We conclude that L = L1 ∪ L2.

9

Problem 4: Never seen before (20 points)

Consider the following language over Σ = {0, 1, 2}:

L = {w ∈ {0, 1, 2}∗ | at least one of the alphabet symbols does not occur in w.}

For instance 00, 0111 and 21122 are in L, but 0012, 1201 aren’t in L.

(a) Give a DFA as a 5-tuple or by drawing it for the above language.

(b) Give a short explanation (2 to 4 sentences) explaining why your construction is correct. 1

(a) We give the state diagram in Figure 12 below.

q∅start q{1}

q{0}

q{2}

q{0,1}

q{0,2}

q{1,2}

q{0,1,2}

0

1

2

0

1

2
1

0

2

2

0

1

0, 1

2
0, 2

1

1, 2

0

0, 1, 2

Figure 12: DFA state diagram for 4(a)

(b) Each state in the DFA represents the subset of characters that have been seen so far. For example,
if the DFA has read in 001010 so far, it will be in q{0,1} because it saw the characters 0 and 1, but
not 2. If the DFA is in state qS corresponding to subset of characters S ⊂ {0, 1, 2}, and reads in

1To make the explanation easier, your state’s names should reflect what information you’re keeping track of. I.e. you
could have names like qlast symbol seen =1,

10

character c, the DFA will transition to qS∪{c}. Therefore the DFA will be in the reject state q{0,1,2}
if and only if it has seen all three characters in the input string. Otherwise, the DFA will accept.

2 Bonus Problem

Let L1, L2 be languages over Σ = {0, 1} such that: M1 is a minimal-state DFA for L1 with s1 states and
M2 is a minimal state DFA for L2 with s2 states. Since regular languages are closed under union, there is
a generic construction of a DFA for L1 ∪L2 using at most s′ = s1 · s2 states.(See Theorem 1.25 in Sipser
book.)

(a) Give an example where the generic construction is not the best possible. That is, give an example of
languages L1,L2 over Σ = {0, 1} such that L1 ∪ L2 has a 1-state DFA, but L1 requires at least two
states. You do not need to formally prove that L1 requires at least two states.

(b) Generalize your construction from part (a) to show: for any s > 1, there exists L1, L2 such that
L1 ∪L2 has a 1-state DFA, but L1 requires at least s states. You do not need to formally prove that
L1 requires at least s states.

(a) Our trick will be to define L1 and L2 such that L1 ∪ L2 = Σ∗ (all strings). This means that L1 ∪ L2

will have the 1-state DFA

q 0, 1

(the DFA that always accepts).

Let L1 = {00} and L2 = Σ∗ \ {00}. Then, L1 requires at least 2 states. To see this, observe that
there are exactly two 1-state DFAs:

q q0, 1 0, 1

The first one always accepts and the second one never accepts. Therefore, any language besides Σ∗

or ∅ requires a DFA of at least two states.

(b) Let L1 = {0s} (the string 0 . . . 0︸ ︷︷ ︸
s

) and L2 = Σ∗ \ {0s}. Again, L1 ∪ L2 has a 1-state DFA (the one

that always accepts).

However, L1 requires at least s states. We will see a proof of this later in the course!

11

