
CS Theory (Fall 25)

Midterm Review Solutions

DFA/NFA

Construct a DFA (or NFA) for the following languages and explain why your DFA (or NFA) is
correct.

1. L1 = {xy | x ∈ {0, 1}∗ has an even number of 1’s and y ∈ {0, 1}∗ has an odd number of 0’s}

Solution.

The following NFA recognizes L1:

qx,evenstart qx,odd

qy,even qy,odd

1

1

0 0

ϵ

0

0

1 1

Proof. For any string w ∈ L1, it can be written as w = xy where x has an even number
of 1’s and y has an odd number of 0’s. The NFA starts in state qx,even and processes x.

• It stays in the top two states, switching between them whenever it reads a 1, and
staying in the same state whenever it reads a 0. Since x has an even number of
1’s, the NFA will end up back in state qx,even after reading all of x.

• Then, the NFA can take the ϵ-transition to state qy,even and process y.

• It stays in the bottom two states, switching between them whenever it reads a 0,
and staying in the same state whenever it reads a 1. Since y has an odd number of
0’s, the NFA will end up in state qy,odd, which is an accepting state, after reading
all of y.

Thus, the NFA accepts w.
Then we prove the converse. Suppose w is accepted by some computation path of the
NFA. Call {qx,even, qx,odd} the x-stage and {qy,even, qy,odd} the y-stage. Since

1

• The NFA starts in x-stage,

• the only accepting state is in the y-stage,

• the only transition edge from the x-stage to the y-stage is an ϵ-transition, no other
ϵ-transitions in the NFA,

• no transition edges from the y-stage back to the x-stage,

we conclude that the computation path must contain exactly one ϵ-transition. This ϵ-
transition splits the computation path into two parts: the x-part before the ϵ-transition
and the y-part after the ϵ-transition.

• In the x-part, the string associated with the computation path must have an even
number of 1’s since the NFA both starts and ends in state qx,even.

• In the y-part, the string associated with the computation path must have an odd
number of 0’s since the NFA starts in state qy,even and ends in state qy,odd.

Thus, w can be written as w = xy where x has an even number of 1’s and y has an odd
number of 0’s (corresponding to the path in x-part and y-part), i.e. w ∈ L1.

2. L2 = {w ∈ {0, 1}∗ | w ∈ L and the length of w is a multiple of 2 or 3}, where L is a
regular language recognized by the DFA (Q,Σ, δ, q0, F).

Solution.

We construct a DFA (Q′,Σ, δ′, q′0, F
′) as follows:

• The states are Q′ = Q× {0, 1, 2, 3, 4, 5} (remembering the current string length
mod 6).

• The start state is q′0 = (q0, 0).

• For any (q, i) ∈ Q′ and a ∈ Σ, the transition function is

δ′((q, i), a) = (δ(q, a), (i+ 1) mod 6).

• The accepted states F ′ ⊆ Q′ are those (q, i) such that q ∈ F and i ∈ {0, 2, 3, 4}.

This DFA decides L2.

Proof. Consider any string w ∈ Σ∗. By mathematical induction on the length of w, we
can show that after reading w, the DFA is in state (q, i) where

• State q is the state of the original DFA after reading w.

• Index i is |w| mod 6, where |w| is the length of w.

Whether “|w| is a multiple of 2 or 3” is completely determined by its residue class
mod 6. Specifically, |w| is a multiple of 2 or 3 if and only if |w| mod 6 ∈ {0, 2, 3, 4}.
Thus, w is accepted by the new DFA if and only if w is accepted by the original DFA
and |w| is a multiple of 2 or 3, i.e. w ∈ L2.

2

Describe the corresponding regular language for the following DFAs or NFAs.

1.

q0start q1 q2

q3

a

b, c

a

b

c

a

b

c

a, b, c

Solution.

The strings that don’t contain c, and both start and end with a.

2.

q0start q1 q2

0

1

1

0

0, 1

Solution.

The strings that contain at least one 1 and the number of 0’s after the last 1 is even.

3.

q0start

q1 q2 q3
ϵ

0 1

ϵ

3

Solution.

The strings that are a repetition of 01 (including empty string, i.e., repeating zero
times).

If we were to turn the NFA given above into an equivalent DFA (whose states now cor-
respond to subsets of {q0, q1, q2, q3}), what state would be the start state? Which states
would be accept states? What’s the transition for state {q1, q2} when reading a 1?

Solution.

The start state is {q0, q1}, which is the ϵ-closure of q0. The accept states are all subsets
that contain either q0 or q3. Among the states reachable from the start state, these are
{q0, q1} and {q0, q1, q3}.
After reading a 1 from the state {q1, q2}, the NFA transitions to the state {q0, q1, q3}.
(We first move from q2 to q3 on input 1, and then take the ϵ-closure.)

RegEx

Construct regular expressions for the following languages.

1. L1 = {w ∈ {a, b, c}∗ | w does contain the substring abc}

Solution.

(a ∪ b ∪ c)∗abc(a ∪ b ∪ c)∗.

2. L2 = {w ∈ {a, b}∗ | does not contain the substring ab}.

Solution.

We first construct a DFA that decides L2:

q0start q1 q2
a

b a

b

a, b

Then we convert the DFA to a regular expression using the standard procedure. First,
we create an NFA where we add a new start state qs and a new accept state qa (state
q2 can be omitted):

4

qsstart q0 q1 qa
ϵ a

b a

ϵ

ϵ

Contracting state q1 (note that ϵ ∪ aa∗ = a∗), we get:

qsstart q0 qa
ϵ

b

a∗

Finally we contract state q0 and get the regular expression b∗a∗.
An alternative solution is to notice that the condition “does not contain the substring
ab” is equivalent to “does not contain the subsequence ab”: Clearly the latter implies
the former. For the converse, suppose a string w contains ab as a subsequence, say
wi = a and wj = b for some i < j. Then let t > i be the first position that wt ̸= wt−1,
then wt = b and wt−1 = a, so w contains ab as a substring.
Thus, L2 is the language of strings that do not contain ab as a subsequence. This is
equivalent to all a’s appearing after all b’s, which is exactly the language described by
the regular expression b∗a∗.

Prove or disprove the following equivalences between regular expressions. Assume r, s, and t are
regular expressions.

1. s∗(rs∗r)∗s∗ = (r ∪ s)∗

Solution.

Not equivalent.

Proof. For example take r = a and s = b.
Any string accepted by regular expression on the left must contain an even number of
a’s: every b∗ has zero a’s, and every (ab∗a) has two a’s so the total number of a’s is
even.
So the string w = a is accepted by the regular expression on the right but not by the
regular expression on the left.

2. r(s ∪ t)∗ = (rs)∗ ∪ (rt)∗

5

Solution.

Not equivalent.

Proof. Specialize to s = t = ϵ, then the left hand side is rϵ∗ = r, and the right hand
side is (rϵ)∗ ∪ (rϵ)∗ = r∗. Further take r = a, then the left hand side accepts only the
string a, while the right hand side is a∗, clearly not equivalent.

3. (r∗ ∪ s∗)∗ = (r ∪ s)∗

Solution.

Equivalent.

Proof. If a string w is accepted by the regular expression on the left, then w can be
written as w = w1w2 · · ·wk where each wi is accepted by r∗∪s∗, i.e. each wi is accepted
by either r∗ or s∗. If wi is accepted by r∗, then wi can be written as wi = wi1wi2 · · ·wiℓi

where each wij is accepted by r. Similarly if wi is accepted by s∗, then wi can be written
as wi = wi1wi2 · · ·wiℓi where each wij is accepted by s. In either case, write w as

w = w11w12 · · ·w1ℓ1w21w22 · · ·w2ℓ2 · · ·wk1wk2 · · ·wkℓk ,

where each wij is accepted by either r or s. Thus, w is accepted by the regular expression
on the right.
Conversely, if a string w is accepted by the regular expression on the right, then w
can be written as w = w1w2 · · ·wk where each wi is accepted by either r or s. If wi

is accepted by r, then wi is also accepted by r∗; if wi is accepted by s, then wi is also
accepted by s∗. Thus, in either case, wi is accepted by r∗∪ s∗. Therefore, w is accepted
by the regular expression on the left.

4. r∗(s ∪ t)∗ = (r ∪ s ∪ t)∗

Solution.

Not equivalent.

Proof. For example take r = a, s = b and t = ϵ. The two sides become a∗b∗ and (a∪b)∗
respectively. The string w = ba is accepted by RHS but not by LHS.

Asymptotic Notation

For each of the following functions, circle all of the letters that are true.

1. f(n) = (log2 n)
2

(a) f(n) = O(log10 n)

(b) f(n) = O((log10 n)
2)

(c) f(n) = O(n1/10)

6

Solution.

(b) (c).

2. f(n) = 2n

(a) f(n) = Ω(2
√
n)

(b) f(n) = Ω(n2)

(c) f(n) = Ω((log2 n)
n)

Solution.

(a) (b).

Streaming

1. Give a streaming algorithm for recognizing the language

L = {w ∈ {0, 1, 2}∗ | the number of 2’s in w is at least 2×(number of 1’s in w)}

(For example, 00121222 ∈ L because there are four 2’s and two 1’s, and 4 ≥ 2 × 2.
112022 /∈ L because there are three 2’s and two 1’s, and 3 ≱ 2× 2.)

Also, prove that your streaming algorithm uses O(log n) space.

Solution.

Consider the streaming algorithm A with

• Alphabet set Π = Σ = {0, 1, 2}.

• Initialize with I = 020.

• Update rule δ: For any w ∈ Π∗, if w has the form x12x2 where x1, x2 ∈ {0, 1}∗,
then treat x1, x2 as binary numbers and let

δ(w, σ) =


x12x2 if σ = 0,

(x1 + 1)2x2 if σ = 1,

x12(x2 + 1) if σ = 2.

Otherwise let δ(w, σ) = w.

• Accepting rule γ(w) = 1 iff w has the form x12x2 where x1, x2 ∈ {0, 1}∗, and
x2 ≥ 2 · x1 as binary numbers.

By mathematical induction on the length of the input string w, we can show that after
reading w, the algorithm A is in state x12x2 where x1 is the number of 1’s in w and x2

is the number of 2’s in w. Thus, w is accepted by A if and only if w ∈ L. Since x1, x2

are both at most n, their length is at most log2(n + 1) + 1. Therefore, the space used
by A is at most 2(log2(n+ 1) + 1) + 1 = O(log n).

7

2. Give a streaming algorithm for recognizing the language

L = {w ∈ {0, 1, 2}∗ | the most common symbol in w appears k times

and the least common appears k − 1 times}.

Ex: w = 001112 ̸∈ L since the most common element is 1 and it appears 3 times and the
least common element 2 appears only 1 time. But w = 0011122 is in L (most common
appears 3 times, least common appears 2 times).

Also, prove that your streaming algorithm uses O(log n) space.

Solution.

Consider the streaming algorithm A with

• Alphabet set Π = Σ = {0, 1, 2}.

• Initialize with I = 02020.

• Update rule δ: For any w ∈ Π∗, if w has the form x02x12x2, where x0, x1, x2 ∈
{0, 1}∗, then treat x0, x1, x2 as binary numbers and let

δ(w, σ) =


(x0 + 1)2x12x2 if σ = 0,

x02(x1 + 1)2x2 if σ = 1,

x02x12(x2 + 1) if σ = 2.

Otherwise let δ(w, σ) = w.

• Accepting rule γ(w) = 1 iff w has the form x02x12x2 where x0, x1, x2 ∈ {0, 1}∗,
and max{x0, x1, x2} = min{x0, x1, x2}+ 1 as binary numbers.

By mathematical induction on the length of the input string w, we can show that after
reading w, the algorithm A is in state x02x12x2 where xi is the number of i’s in w for
each i = 0, 1, 2. Thus, w is accepted by A if and only if w ∈ L. Since x0, x1, x2 are all
at most n, their length is at most log2(n+1)+ 1. Therefore, the space used by A is at
most 3(log2(n+ 1) + 1) + 2 = O(log n).

Proving Non-Regularity

Show that the following languages are not regular. Do this by giving a lower bound on the
one-way communication complexity of language, or by using a direct argument. You should
practice proving the lower bound by both a direct argument, and by a one-way communication
complexity lower bound argument. Do not prove your lower bound by a reduction from another
language.

1. L = {w ∈ {0, 1}∗ | w = xy and the first 1 in x does not appear after the first 1 in y}.
Note: this is the example “First” given in the class notes, so you already have the answer.
Practice solving it again without looking.

8

https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC3-draft.pdf

Solution.

See class notes.

2. Index = {w ∈ {0, 1}∗ | w = xy and xi = 1 where i is the first index in y with yi = 1}.
Note: this is an example from the lecture notes. But we didn’t cover the lower bound in
class.

Solution.

This problem has a one-way communication lower bound of Ω(n).

Proof. Suppose it uses < n bits to decide Index where |x| = |y| = n. Then the possible
messages that Alice can send to Bob are the strings of length < n, which are at most
2n − 1 many. But there are 2n possible inputs for Alice, so by the pigeonhole principle,
there exist two distinct inputs x and x′ for Alice that lead to the same message m being
sent to Bob. Since x ̸= x′, there is some index i such that xi ̸= x′

i. Without loss of
generality, assume xi = 0 and x′

i = 1.
Now let Bob’s input be y = 0i−110n−i, i.e., the string of n bits with a 1 in the i-th
position and 0’s elsewhere. Then the first index in y with yi = 1 is i, so Bob should
accept if Alice’s input is x′ (since x′

i = 1), and reject if Alice’s input is x (since xi = 0).
But Bob receives the same message m from Alice in both cases, so he must either accept
both or reject both, a contradiction. Therefore, the one-way communication complexity
of Index is at least n bits.

3. Practice proving one-way communication lower bounds for other examples that were proven
in class or in the notes (for example: EQ, MAJ, and variants of MAJ such as the language
Sum from HW3.)

Solution.

See this note and this note.

True/False Section

Determine whether each of the following statements is true or false:

1. (T/F) The following is a valid DFA for a language over {0, 1}:

q0start q1 q11

0

1

0

1

0

2. (T/F) The language recognized by the following DFA is {0, 1}:

9

https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC2.pdf
https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC3.pdf

q0start q1 q2
0, 1 0, 1

0, 1

3. (T/F) Suppose the languages L1 and L2 are recognized by the DFAs D1 and D2, respec-
tively. If D1 has 3 states and D2 has 4 states, then there exists a 15 state DFA that
recognizes L1\L2 = {w ∈ L1 and w ̸∈ L2}.

4. (T/F) If L1 and L2 are languages with (L1)
∗ = L2, and L2 is regular, then L1 is regular.

5. (T/F) If L1 and L2 are non-regular languages, then L1 ∪ L2 is a non-regular language as
well.

6. (T/F) The concatenation of a language with itself, L2 = LL, can be written in set-theoretic
notation as {ww | w ∈ L}.

7. (T/F) Suppose there exists an NFA N = (Q,Σ, δ, q0, F) which recognizes the language
L. Let N ′ = (Q,Σ, δ, q0, Q\F) be the NFA where the accept and reject states of N are
switched. Then N ′ recognizes the complement L.

8. (T/F) If L is a regular language recognized by an NFA with k ∈ Z>0 states, then there
exists an DFA recognizing L with 2k − 1 states.

9. (T/F) If the language L is recognized by an NFA with 4 states, then there exists a DFA
recognizing L with less than 20 states.

10. (T/F) The language L = {w ∈ {0, 1}∗ | w has even length and contains the substring 1010}
can be described with a regular expression.

11. (T/F) The language described by the expression (01)∗(0∪1)∗∅ contains more strings than
the language described by the expression ((0 ∪ 10) ∪ ϵ)(0 ∪ 1)110.

12. Quick asymptotic notation:

(a) (T/F) n log2 n = O(n2)

(b) (T/F) n = Ω(log n)

(c) (T/F) 1/n = Ω(1/ log n)

(d) (T/F) 2n = o(3n)

(e) (T/F) 3n = 2O(n)

(f) (T/F) n−1 = poly(n)

13. More challenging asymptotic notation:

(a) (T/F)
∑n

i=1 3
i = O(2n)

(b) (T/F) n! = poly(n)

10

