CS Theory (Fall 25)

Midterm Review Solutions

DFA /NFA

Construct a DFA (or NFA) for the following languages and explain why your DFA (or NFA) is
correct.

1. Ly ={zy | z € {0,1}* has an even number of 1’s and y € {0, 1}* has an odd number of 0’s}

The following NFA recognizes Lq:

start

Proof. For any string w € Ly, it can be written as w = xy where x has an even number
of 1’s and y has an odd number of 0’s. The NFA starts in state g, even and processes x.

e [t stays in the top two states, switching between them whenever it reads a 1, and
staying in the same state whenever it reads a 0. Since z has an even number of
1’s, the NFA will end up back in state ¢, even after reading all of x.

e Then, the NFA can take the e-transition to state gy even and process y.

e [t stays in the bottom two states, switching between them whenever it reads a 0,
and staying in the same state whenever it reads a 1. Since y has an odd number of
0’s, the NFA will end up in state g, 044, Which is an accepting state, after reading
all of y.

Thus, the NFA accepts w.
Then we prove the converse. Suppose w is accepted by some computation path of the
NFA. Call {gseven; @x,0dd} the z-stage and {qy even, @yodd} the y-stage. Since

e The NFA starts in z-stage,
e the only accepting state is in the y-stage,

e the only transition edge from the z-stage to the y-stage is an e-transition, no other
e-transitions in the NFA,

e no transition edges from the y-stage back to the z-stage,

we conclude that the computation path must contain exactly one e-transition. This e-
transition splits the computation path into two parts: the x-part before the e-transition
and the y-part after the e-transition.

e In the z-part, the string associated with the computation path must have an even
number of 1’s since the NFA both starts and ends in state g; even-

e In the y-part, the string associated with the computation path must have an odd
number of 0’s since the NFA starts in state gy even and ends in state g, oda.

Thus, w can be written as w = xy where x has an even number of 1’s and y has an odd
number of 0’s (corresponding to the path in z-part and y-part), i.e. w € L. O]

2. Ly = {w € {0,1}* | w € L and the length of w is a multiple of 2 or 3}, where L is a
regular language recognized by the DFA (Q, X, 6, qo, F).

We construct a DFA (@', 3,0, ¢, F') as follows:

e The states are Q' = @ x {0,1,2,3,4,5} (remembering the current string length
mod 6).

e The start state is ¢{ = (¢o, 0).
e For any (¢,7) € Q" and a € X, the transition function is
0'((q,1),a) = (8(q,a), (i + 1) mod 6).

e The accepted states F' C @' are those (¢, %) such that ¢ € F and i € {0,2,3,4}.
This DFA decides L.

Proof. Consider any string w € ¥*. By mathematical induction on the length of w, we
can show that after reading w, the DFA is in state (q,7) where

e State ¢ is the state of the original DFA after reading w.
e Index i is |w| mod 6, where |w]| is the length of w.

Whether “|w| is a multiple of 2 or 3” is completely determined by its residue class
mod 6. Specifically, |w| is a multiple of 2 or 3 if and only if |w| mod 6 € {0,2,3,4}.
Thus, w is accepted by the new DFA if and only if w is accepted by the original DFA
and |w| is a multiple of 2 or 3, i.e. w € Ls. O

Describe the corresponding regular language for the following DFAs or NFAs.

1.
start
The strings that don’t contain ¢, and both start and end with a.
2.
start
The strings that contain at least one 1 and the number of 0’s after the last 1 is even.
3.

0 1
€

start

The strings that are a repetition of 01 (including empty string, i.e., repeating zero
times).

If we were to turn the NFA given above into an equivalent DFA (whose states now cor-

respond to subsets of {qo, q1,q2,q3}), what state would be the start state? Which states
would be accept states? What’s the transition for state {q;, g2} when reading a 17

The start state is {qo, ¢1 }, which is the e-closure of ¢o. The accept states are all subsets
that contain either gy or ¢g3. Among the states reachable from the start state, these are
{0, :1} and {qo, ¢1, a3}

After reading a 1 from the state {q1, g2}, the NFA transitions to the state {qo, q1, s}
(We first move from ¢, to g3 on input 1, and then take the e-closure.)

RegEx

Construct regular expressions for the following languages.

1. Ly = {w € {a,b,c}* | w does contain the substring abc}

(aUbUc)*abc(aUb U c)*.

2. Ly ={w € {a,b}*| does not contain the substring ab}.

We first construct a DFA that decides Lo:

b a aab

a /_\ b
start qo0 q

Then we convert the DFA to a regular expression using the standard procedure. First,

we create an NFA where we add a new start state ¢; and a new accept state g, (state
g2 can be omitted):

€ a €
start —>

Contracting state ¢; (note that e Uaa* = a*), we get:

start qo0 Ga

Finally we contract state ¢y and get the regular expression b*a*.

An alternative solution is to notice that the condition “does not contain the substring
ab” is equivalent to “does not contain the subsequence ab”: Clearly the latter implies
the former. For the converse, suppose a string w contains ab as a subsequence, say
w; = a and w; = b for some i < j. Then let ¢ > 7 be the first position that w; # w;_1,
then w; = b and w;_; = a, so w contains ab as a substring.

Thus, Lo is the language of strings that do not contain ab as a subsequence. This is
equivalent to all a’s appearing after all b’s, which is exactly the language described by
the regular expression b*a*.

Prove or disprove the following equivalences between regular expressions. Assume r, s, and ¢ are
regular expressions.

1. s*(rs*r)*s* = (rus)*

Not equivalent.

Proof. For example take r = a and s = b.
Any string accepted by regular expression on the left must contain an even number of
a’s: every b* has zero a’s, and every (ab*a) has two a’s so the total number of a’s is

even.
So the string w = a is accepted by the regular expression on the right but not by the
regular expression on the left. O

2. r(sUt) = (rs)* U (rt)*

Not equivalent.

Proof. Specialize to s = t = ¢, then the left hand side is re* = r, and the right hand
side is (re)* U (re)* = r*. Further take r = a, then the left hand side accepts only the
string a, while the right hand side is a*, clearly not equivalent. O

3. (r*uUst)*=(rus)*

Equivalent.

Proof. 1f a string w is accepted by the regular expression on the left, then w can be
written as w = wyws - - - wy, where each w; is accepted by r*Us*, i.e. each wj is accepted
by either r* or s*. If w; is accepted by r*, then w; can be written as w; = wjw;s - - - Wy,

where each w;; is accepted by r. Similarly if w; is accepted by s*, then w; can be written
as w; = Wi W2 - - - Wi, where each w;; is accepted by s. In either case, write w as

W = W11W12 * * * W1, W21W22 * * * Wogy * * * WE1Wk2 * * * Wk, ,

where each w;; is accepted by either r or s. Thus, w is accepted by the regular expression
on the right.

Conversely, if a string w is accepted by the regular expression on the right, then w
can be written as w = wjws - - - wy, where each w; is accepted by either r or s. If w;
is accepted by r, then w; is also accepted by r*; if w; is accepted by s, then w; is also
accepted by s*. Thus, in either case, w; is accepted by r* U s*. Therefore, w is accepted
by the regular expression on the left. O]

4. r*(sUt)* = (rusut)*

Not equivalent.

Proof. For example take r = a, s = b and ¢ = €. The two sides become a*b* and (aUb)*
respectively. The string w = ba is accepted by RHS but not by LHS. O

Asymptotic Notation
For each of the following functions, circle all of the letters that are true.
L. f(n) = (logyn)*

(a) f(n) = O(logyyn)
(b) f(n) = O((logy,n)?)
O(nl/lo)

=
—
—~
2
I

Streaming
1. Give a streaming algorithm for recognizing the language

L ={w € {0,1,2}" | the number of 2’s in w is at least 2x (number of 1’s in w)}

(For example, 00121222 € L because there are four 2’s and two 1’s, and 4 > 2 x 2.
112022 ¢ L because there are three 2’s and two 1’s, and 3 % 2 x 2.)

Also, prove that your streaming algorithm uses O(logn) space.

Consider the streaming algorithm A with
e Alphabet set IT = ¥ = {0, 1, 2}.
e [nitialize with I = 020.

e Update rule 6: For any w € IT*, if w has the form z12z5 where z1, 25 € {0,1}",
then treat xq, x5 as binary numbers and let

11279 if 0 =0,
dw,0) =1 (x1+1)2x9 ifo=1,
212(za+1) ifo=2.

Otherwise let 0(w, o) = w.

e Accepting rule y(w) = 1 iff w has the form z,2z5 where x1,2o € {0,1}*, and
ZTo > 2 - a1 as binary numbers.

By mathematical induction on the length of the input string w, we can show that after
reading w, the algorithm A is in state x12x5 where x; is the number of 1’s in w and
is the number of 2’s in w. Thus, w is accepted by A if and only if w € L. Since x1, x5
are both at most n, their length is at most logy(n + 1) + 1. Therefore, the space used
by A is at most 2(logy(n + 1) + 1) +1 = O(logn).

2. Give a streaming algorithm for recognizing the language

L = {w € {0,1,2}" | the most common symbol in w appears k times

and the least common appears k — 1 times}.

Ex: w = 001112 ¢ L since the most common element is 1 and it appears 3 times and the
least common element 2 appears only 1 time. But w = 0011122 is in L (most common
appears 3 times, least common appears 2 times).

Also, prove that your streaming algorithm uses O(logn) space.

Consider the streaming algorithm A with
e Alphabet set IT = ¥ = {0, 1, 2}.
e Initialize with I = 02020.

e Update rule §: For any w € II*, if w has the form x¢2x,2x9, where xg, x1, 29 €
{0, 1}*, then treat xg, z1, x2 as binary numbers and let

(xo + 1)221229 if 0 =0,
d(w,0) =< xo2(x1 +1)2zy if o =1,
x02x12(zy + 1) if o =2.

Otherwise let 0(w, o) = w.

e Accepting rule y(w) = 1 iff w has the form z¢2z12z5 where ¢, x1, 22 € {0,1}",
and max{z, 1,22} = min{zg, 1,22} + 1 as binary numbers.

By mathematical induction on the length of the input string w, we can show that after
reading w, the algorithm A is in state z2x,2x9 where z; is the number of ¢’s in w for
each i = 0,1,2. Thus, w is accepted by A if and only if w € L. Since zg, x1, x5 are all
at most n, their length is at most log,(n + 1) + 1. Therefore, the space used by A is at
most 3(logy(n + 1) + 1) +2 = O(logn).

Proving Non-Regularity

Show that the following languages are not regular. Do this by giving a lower bound on the
one-way communication complexity of language, or by using a direct argument. You should
practice proving the lower bound by both a direct argument, and by a one-way communication
complexity lower bound argument. Do not prove your lower bound by a reduction from another
language.

1. L={w e {0,1}* | w = zy and the first 1 in x does not appear after the first 1 in y}.

Note: this is the example “First” given in the class notes, so you already have the answer.
Practice solving it again without looking.

https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC3-draft.pdf

See class notes.

2. Index = {w € {0,1}* | w = zy and x; = 1 where 7 is the first index in y with y; = 1}.

Note: this is an example from the lecture notes. But we didn’t cover the lower bound in
class.

This problem has a one-way communication lower bound of {2(n).

Proof. Suppose it uses < n bits to decide Index where |z| = |y| = n. Then the possible
messages that Alice can send to Bob are the strings of length < n, which are at most
2" — 1 many. But there are 2" possible inputs for Alice, so by the pigeonhole principle,
there exist two distinct inputs x and 2’ for Alice that lead to the same message m being
sent to Bob. Since x # ', there is some index ¢ such that z; # 2. Without loss of
generality, assume z; = 0 and z, = 1.

Now let Bob’s input be y = 071107, i.e., the string of n bits with a 1 in the i-th
position and 0’s elsewhere. Then the first index in y with y; = 1 is ¢, so Bob should
accept if Alice’s input is 2’ (since x} = 1), and reject if Alice’s input is z (since z; = 0).
But Bob receives the same message m from Alice in both cases, so he must either accept
both or reject both, a contradiction. Therefore, the one-way communication complexity
of Index is at least n bits. O

3. Practice proving one-way communication lower bounds for other examples that were proven

in class or in the notes (for example: EQ, MAJ, and variants of MAJ such as the language
Sum from HW3.)

See this note and this notel.

True/False Section

Determine whether each of the following statements is true or false:

1. (T/F) The following is a valid DFA for a language over {0, 1}:

2. (T/F) The language recognized by the following DFA is {0, 1}:

https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC2.pdf
https://www.cs.columbia.edu/~toni/Courses/CSTheory2025/Notes/StreamingCC3.pdf

10.

11.

12.

13.

0,1

start

(T/F) Suppose the languages L; and Lo are recognized by the DFAs D; and Ds, respec-
tively. If D; has 3 states and D, has 4 states, then there exists a 15 state DFA that
recognizes Li1\Ls = {w € Ly and w & Ly}.

(T/F) If Ly and Lo are languages with (L;)* = Ly, and Ly is regular, then L, is regular.

(T/F) If Ly and Ly are non-regular languages, then L; U Ly is a non-regular language as
well.

(T/F) The concatenation of a language with itself, L? = LL, can be written in set-theoretic
notation as {ww | w € L}.

(T/F) Suppose there exists an NFA N = (Q, X, 0, qo, F') which recognizes the language
L. Let N' = (Q,%,4,qo, Q\F) be the NFA where the accept and reject states of N are
switched. Then N’ recognizes the complement L.

(T/F) If L is a regular language recognized by an NFA with k € Z- states, then there
exists an DFA recognizing L with 2k — 1 states.

(T/F) If the language L is recognized by an NFA with 4 states, then there exists a DFA
recognizing L with less than 20 states.

(T/F) The language L = {w € {0,1}* | w has even length and contains the substring 1010}
can be described with a regular expression.

(T/F) The language described by the expression (01)*(0U 1)*@ contains more strings than
the language described by the expression ((0 U 10) U ¢€)(0 U 1)110.

Quick asymptotic notation:

(a) (T/F) nlog®n = O(n?)
(b) (T/F) n=Q(logn)

(c) (T/F) 1/n=Q(1/logn)
(d) (T/F) 2" = o(3")

(e) (T/F) 3" =200

(f) (T/F) n~' = poly(n)

More challenging asymptotic notation:

(a) (T/F) Y0, 3 = 0(2")
(b) (T/F) n! = poly(n)

10

