
CS Theory (Fall ’25) September 24, 2025

Regular languages are closed under ◦ and ∗

Instructors:William Pires and Toniann Pitassi

1 Closure under ◦

Fix some alphabet Σ. Recall that given two languages L1, L2 over Σ we define

L1 ◦ L2 = {w ∣ w = xy, x ∈ L1, y ∈ L2}.

We want to prove the following:

Theorem 1. If L1, L2 are regular languages over Σ then L1 ◦ L2 is regular.

Proof. Let L1, L2 be regular languages. Let D1 = (Σ, R = {r0, . . . , rk}, r0, F1, δ1) and D1 = (Σ, S =

{s0, . . . , sℓ}, s0, F2, δ2) be DFAs for L1, L2 respectively. We build an NFA N for L1 ◦ L2 as follows:

• Alphabet: Σ

• Set of states: R ∪ S.

• Start state: r0

• Accept states: F2

• transition function δ
′
where:

δ
′(q, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{δ1(q, c)} if q ∈ R and c ∈ Σ

{δ2(q, c)} if q ∈ S and c ∈ Σ

{s0} if q ∈ F1 and c = ϵ

1

What the above means, is: In the NFA N are states are the ones of D1 and D2. We add ϵ-transitions
from the former accept states of D1 to the start state of D2. The only accept states are the ones in D2.

See figures Figures 1 and 2 bellow.
2

1
Be careful, the transition function δ

′
is for an NFA so you should use set notation.

2
The illustration is only here to help you understand the construction. It’s not enough to draw a picture when doing this

kind of proofs. You need to give a 5-tuple as we did above.

1



Figure 1: The two DFAs D1 and D2

Figure 2: The NFA obtained following the construction

We now need to prove this construction is correct. To do this, we need to include two directions: if
w ∈ L1 ◦ L2 then N accepts w. If N accepts w then w ∈ L1 ◦ L2.

If w ∈ L1 ◦ L2 then N accepts w: L1 ◦ L2 ⊆ L(N)
Let w ∈ L1 ◦ L2. We have that w = xy where x ∈ L1 and y ∈ L2. Since x ∈ L1, D1 accepts x. So

when running D1 on x, we take a path starting in r0 and end in an accept state in r
∗
∈ F1. Call this

path p1. Since y ∈ L2, D2 accepts y. So when running D2 on y, we take a path starting in s0 and end in
an accept state in s

∗
∈ F2. Call this path p2.

Now, in N , on input w = xy, we start in r0. We can first read the x part of w, take the path p1 and
end in r

∗
. Since r

∗
∈ F1, we take the ϵ transition from r

∗
to s0. Now that we’re in s0, we can read the y

part of w, take the path p2 and end in s
∗
. Since s

∗
∈ F2, s

∗
is an accept state of N and the NFA accepts

w.

If N accepts w, then w ∈ L1 ◦L2: L(N) ⊆ L1 ◦L2 Assume w is accepted by N . Then there is some
path p in N , starting in r0 and ending in an accept state s

∗
∈ F2, such that w can take the path p in N .

In particular, the path must at some reach a state r
∗
∈ F1, take the ϵ transition from r

∗
to s0 and

then eventually reach s
∗
(I.e we go from the D1 part of N to the D2 part). By construction, this is only

2



time the path can take an ϵ transition. Hence, we can split p into two parts, the first part p1 between
r0 and r

∗
, and the second part p2 between s0 and s

∗
. In particular, observe that the path p1 is made of

states only in R (states of D1) while the path p2 is made of states only in S (states of D2).
Now, let x be the sequence of symbols read from while following the path p1. And let y be the

sequence of symbols read while following the path p2. We have w = x ◦ ϵ ◦ y = xy, where the ϵ comes
from the ϵ-transition taken between r

∗
and s

∗
.

Now observe that x must be accepted by D1. Indeed, when running D1 on x, we start in r0, follow
the path p1 and end in r

∗
∈ F1. So x ∈ L1. Similarly, when running D2 on y, we start in s0, follow the

path p2 and end in s
∗
∈ F2. So y ∈ L2 since D2 accepts y.

Hence we have that w = xy where x ∈ L1 and y ∈ L2.

Conclusion: We have shown L1◦L2 ⊆ L(N) and L(N) ⊆ L1◦L2. Hence we have that L(N) = L1◦L2,
so N is an NFA for L1 ◦ L2. This shows L1 ◦ L2 is a regular language.

2 Closure under ∗

Fix some alphabet Σ. Recall that given a language L over Σ we define L
∗
to be the set of all strings

w ∈ Σ
∗
such that there exists some k ≥ 0 such that w can be written as w = u1u2 . . . uk where for every

i ≤ k, ui ∈ L.

Theorem 2. If L is a regular language over Σ then L
∗
is regular.

Proof. Let L be a regular language. Let M = (Σ, R = {r0, . . . , rk}, r0, F1, δ1) be a DFA for L. We will
build an NFA, N , for L

∗
as follows:

• Alphabet: Σ

• Set of states: R ∪ {q0}.
• Start state: q0

• Accept states: F1 ∪ {q0}
• transition function δ where:

δ(q, c) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{δ1(q, c)} if q ∈ R and c ∈ Σ

{r0} if q ∈ F1 and c = ϵ

{r0} if q = q0 and c = ϵ

What the above means is: in the NFA N , the states are all states of M plus a new start state, q0.
The transition function for N keeps all transitions of M and additionally we add: (i) ϵ-transitions from
each accept state of M to r0 (the original start state), and (ii) an ϵ transition from the new start state
q0 to r0. See the figures below for an example of this construction.

3



We now need to prove this construction is correct. To do this, we need to prove both directions: if
w ∈ L

∗
then N accepts w, and if N accepts w then w ∈ L

∗
.

If w ∈ L
∗
then N accepts w: L

∗
⊆ L(N)

Let w ∈ L
∗
. Then there exists k ≥ 0 such that we can write w = u1u2 . . . uk such that for every i ≤ k,

ui ∈ L. If k = 0, then w = ϵ, and since q0 is an accept state of N , ϵ is accepted.
The second case is when k ≥ 1. As in the above argument for proving closure under concatenation,

since every ui is in L, when running M on ui, there is an accepting computation path starting in r0 and
ending in an accept state of M . Let’s call pi the accepting path of M on input ui. Now we will describe
the existence of an accepting computation path when we run N on input w = u1u2 . . . uk. Starting in
the start state q0, we take the ϵ-transition to r0. Then for i = 1, . . . , k: starting in r0, we run N on ui
following the path pi. Since this path ends in an accept state there is an ϵ-transition from this accept
state back to r0 so we follow this ϵ-transition. After processing all ui’s we are guaranteed to be in an
accept state since the path pk ends in an accept state. Therefore N accepts w.

If N accepts w, then w ∈ L
∗
: L(N) ⊆ L

∗

Assume w is accepted by N . Then there is some accepting computation path p when we run N on
input w, where p starts in q0 and ends in an accept state of N . The first case is where the path p has
length 0. This can only happen when w = ϵ and then w ∈ L

∗
as desired.

4



The second more complicated case is when the path p has length at least 1, and therefore the first
transition taken in p is the ϵ-transition from q0 to r0. Now we will partition the path p into parts, based
on where the ϵ transitions occur in p: we will write p = ϵp1ϵp2 . . . ϵpk, where each pi consists of a subpath
of pi (of length at least 1) that contains no ϵ-transitions, and one ϵ-transition is taken between subsequent
pi’s. Since there are no ϵ-transitions in any pi, each pi must consist of a sequence of edges that correspond
to a substring, ui, of w. Thus the partition of p induces a partition of w as well: w can be written as
w = u1 . . . , uk, where each ui corresponds to the edge labels on the path pi.

We want to argue that for each i, ui is in L. Let’s first consider the case where k = 1 (the base case).
Then p = ϵp1, so w = u1, and w = u1 corresponds to the edge labels on the path p1. In other words, on
input w = u1, the path p starts with an ϵ-transition from q0 to r0 and then follows the unique path p1 in
the original DFA M (for L) from r0 to an accept state. Therefore w = u1 is accepted by N as desired.

Now consider the case when k ≥ 2. In this case w = u1 . . . uk, k ≥ 2 and p = ϵp1 . . . ϵpk, and
w = u1 . . . uk. Therefore the path p = ϵp1ϵp2 . . . ϵpk can be broken into phases: In the first phase we
process ϵp1 as follows: starting in q0 we take the ϵ-transition to r0, and then we process u1 following path
p1. In the next phase we process ϵp2. Now since we take an ϵ-transition immediately after p1, it must be
that p1 ends in an accept state (since ϵ-transitions can only be taken from an accept state), and therefore
u1 must be in L. Furthermore since all ϵ-transitions go to r0, the next subpath p2 must begin in r0. So
now we process u2 following path p2 starting in r0 to finish phase 2. If we are not finished (i.e., if k ≥ 3),
then by the same argument, since there is an ϵ-transition following p2, path p2 must end in an accept
state, and therefore u2 is also in L. We continue arguing in the same way to show that u1, . . . , uk−1 must
all be in L, and in the last phase, we process the final substring uk following path pk starting in r0. Now
since p ends in an accept state, and p ends with pk, pk must also end in an accept state, and therefore
the last string uk is also in L.

To summarize: for every i = 1, . . . , k, pi is labelled by a substring ui of w where w = u1 . . . , uk. For
each i, pi is the unique path taken in M on input ui , which as we have argued above must end in an
accept state. Therefore each substring u1, . . . , uk is in L, and since w = u1 . . . uk, we can conclude that
w ∈ L

∗
.

5


