
CS Theory (Spring ’25) Fall, 2025

Lecture Notes: Communication Complexity, cont’d

Instructor:Toniann Pitassi

Last class we defined general two-way communication protocols which generalize the one-way com-
munication model. We also saw an example, the INDEX function, which requires Ω(n) one-way
communication but has a must lower two-way communication protocol of cost O(log n). Thus two-
way communication protocols can sometimes be significantly shorter than one-way protocols. In
this lecture we will prove some lower bounds for the following languages.

Definition 1. We define the following communication problems:

1. Let EQ(x, y) =

{
1 if x = y (as integers)

0 otherwise

2. Let GEQ(x, y) =

{
1 if x is greater than or equal to y (as integers)

0 otherwise

1 Some formal definitions

Before proving the above, we will give a slightly more formal definition of a two-party protocol.
This definition makes it easier to do lower bound (but harder to explain lower bounds).

Definition 2. We have two players, Alice and Bob and some function f : {0, 1}∗×{0, 1}∗ → {0, 1}.
On input w = wAwB, players take turns, starting with Alice, sending one bit per turn. The last bit
sent must be f(wA, wB).

...

Alice Bob

m1 ∈ {0, 1}

m2 ∈ {0, 1}

m3 ∈ {0, 1}

m4 ∈ {0, 1}

Figure 1: An example of communication between Alice and Bob.

More formally we have:
Alice sends message m1 = fA(wA) ∈ {0, 1} to Bob round 1

Bob sends message m2 = fB(m1, w
B) ∈ {0, 1} to Alice1 round 2

...

1The message Bob sends depends on the message Alice sent him at first

1



Alice sends message m2i+1 = fA(m1, . . . ,m2i, w
A) to Bob round 2i+ 1

Bob sends message m2i+2 = fB(m1, . . . ,m2i+1, w
B) to Alice round 2i+ 2

The communication complexity of a protocol Π, ccΠ(n)=# total of bits sent over all w = wAwB,
|w| ≤ n.

Looking back at the Index example from the previous notes (where Bob sends an index i in binary
to Alice), the protocol now would look like this:

• Alice sends 0.

• Bob the sends the first bit of the index i.

• Alice sends 0

• Bob the sends the second bit of i.

• Alice replies 0

• etc..

• Bob sends the last bit of i.

• Alice sends xi to Bob.

This is more complicated, but does the same thing: We just need Alice to send “dummy messages”
between each bit Bob sends. This is why when we give protocols, we just let Alice and Bob send
whatever message they want. Note that the above also uses O(log(n)) bits of communication. In
particular, this more formal view where Alice and Bob each send one bit at a time only increases
the communication by a constant factor (so it’s the same in O-notation).

2 Low Cost Communication Implies the Matrix is Simple

Before proving lower bounds in the two-way communication setting, it is helpful to understand how
a general communication protocol for a language L relates to the underlying matrix ML.

Let L be any language, and consider inputs w = wAwB where w has length 2n. As discussed in
previous lectures, we can express the communication problem for L on inputs of length 2n by a
2n-by-2n matrix, ML. Let X = {0, 1}n be the set of all possible inputs wA for Alice, and similarly
let Y = {0, 1}n be all possible inputs wB for Bob. The rows of ML are labelled by elements of X
and the columns are labelled by elements of Y , and entry (x, y) of ML is 1 if w = xy ∈ L and 0
otherwise.

Assume that we have a protocol of cost k for ML (over inputs w = wAwB of length 2n). We now
want to understand how the protocol partitions the matrix ML into disjoint rectangles.

Definition 3. Given a matrix M with rows X and columns Y : A rectangle R is a set X ′ × Y ′

where X ′ ⊆ X and Y ′ ⊆ Y . 2

Definition 4. Given a matrix M with rows X and columns Y . A rectangle X ′ × Y ′ is monochro-
matic if M(x, y) has the same value for all (x, y) ∈ X ′ × Y ′.

2A rectangle is obtained by picking a subset of the rows X ′ and the columns Y ′, then picking all entries at the
intersection of these.

2



Claim 5. Let Π be a cost k protocol for L over inputs w = wAwB, where |w| = 2n. Then Π
partitions ML into 2k disjoint monochromatic rectangles.

To prove the claim, consider the first round where Alice sends a one-bit message m(wA) to Bob.
This partitions her inputs X into two subsets, X0 and X1 where X0 are the inputs wA ∈ X where
Alice’s first message is 0, and X1 are the inputs wA where Alice’s first message is 1. The figure
below (Figure 4) illustrates an example where she sends 0 on ouputs 00,001,010 and on the other
inputs she sends a 1, where the blue horizontal line indicates the partition, with one subset above
and the other subset below the line. Thus her first 1-bit message partitions the entire matrix into
two rectangles, X0 × Y , and X1 × Y .

Now in the second round, Bob sends a bit which depends on his input as well as Alices message.
This further divides the matrix into four subrectangles, illustrated by Figure 4. In the third round,
Alice sends a bit depending on her input as well as the two messages so far, which divides the
matrix into 8 subrectangles. Then in the 4th round, Bob sends the final bit which divides the
matrix into 16 subrectangles, and so on. Assuming the protocol has cost k, it follows that this
partitions ML into 2k disjoint rectangles, where each rectangle corresponds to a distinct transcript
3 where the last bit of the transcript is the output. Now if the protocol is correct, for each of the
2k subrectangles, all cells in that subrectangle must be either all labelled by ”1” or all labelled by
”0”. Thus, at the end of the protocol ML has been partitioned into 2k disjoint monochromatic
rectangles, so we have proven the claim.

As an example, Figure 2 below shows the matrix MPARITY for PARITY on all inputs w = wAwB

of length 2n, where n = 3.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

Figure 2: Communication Matrix for PARITY

In the standard protocol, Alice’s first message is 1 if the number of 1’s in wA is odd, and 0 otherwise.
If we rearrange the rows/columns of the matrix, we get the picture in Figure 3. In the second and
final round, Bob computes the number of 1’s in wB plus the value m1 sent by Alice, and outputs
1 if this sum is odd, and 0 if the sum is even. Thus his message m2 is the output of the protocol.
Thus, this protocol partitions MPARITY into 4 disjoint monochromatic rectangles.

3A transcript is the ordered list of bits sent by Alice and Bob during the execution of the protocol.

3



000 011 101 110 001 010 100 111

000

011

101

110

001

010

100

111

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

Figure 3: Communication Matrix for PARITY reordered

3 A two-party lower bound for EQ

As we saw, any one way protocol for EQ requires Ω(n) communication. Alice must send her whole
input to Bob. But is that also needed for two-party protocols ? It turns out that the answer is yes!

Theorem 6. Any communication protocol for EQ on inputs of length 2n requires Ω(n) communi-
cation.

Proof. Our proof will follow the same general strategy as our lower bound for one-way protocols.
First we recall the communication matrix associated with EQ. Below (in Figure 3) is a figure of the
EQ matrix on inputs w = wAwB where w has length 6. The rows are labeled with all x ∈ X, where
X is the set of all n strings that Alice could get as input, and similarly the columns are labeled
with all y ∈ Y . In our running example, X consists of all strings wA of length 3, and Y consists
of all strings wB of length 3. Thus there are |X| = 23 = 8 rows and |Y | = 23 columns, where the
rows/columns correspond to all possible inputs for Alice/Bob respectively, and an entry (wA, wB)
is labelled with the value EQ(wA, wB). Crucially the matrix is the identity matrix, which we will
see has maximal communication complexity even for general protocols.

Now we can use a very similar pigeonhole principle argument to prove that EQ cannot be solved by
any protocol where less than n bits are sent. As we saw in the example, if s bits are sent altogether,
this partitions the EQ matrix into at most 2s monochromatic subrectangles. Now consider the 2n

diagonal entries, which correspond to the inputs where EQ is 1. If 2s < 2n, then by the pigeonhole
principle there must exist a subrectangle that contains at least 2 different diagonal inputs. That
is, there must be a transcript (corresponding to a subrectangle) and two yes-inputs, w = uu and
w′ = vv that land in the same subrectangle. Now since it is a subrectangle, the inputs uv and vu
must also lie in this same subrectangle. Now we reach a contradiction: since every subrectangle is
monochromatic, the protocol will either output ”1” on all 4 of these inputs or it will output ”0” on
all four of these inputs. But the inputs uu and vv should be accepted while the inputs uv and vu
should be rejected.

■

4



000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 4: Communication Matrix for EQUALITY

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 5: Round 1 of EQUALITY Protocol

Theorem 7. Any communication protocol for GEQ requires Ω(n) communication complexity.

4 A Communication Lower Bound for GEQ

Proof. GEQ on input (u, v) should output 1 if and only if u ≤ v, where we are viewing u and v
as binary representations of nonnegative integers. Note that the communication matrix for GEQ
is similar to the matrix for EQ. Recall that the matrix for EQ is the identity matrix: all entries
are 0 except for those on the diagonal which are 1. For GEQ, it is still a lower triangular matrix
(meaning that all entries above the diagonal are 0), but now all other entries are 1.

5



000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 6: Round 2 of EQUALITY Protocol

We will see that the same argument that we saw last class to prove a lower bound for EQ works here
as well. Assume for sake of contradiction that the communication complexity of GEQ on inputs
(u, v) where |u| = |v| = n is at most s, where 2s < 2n. The protocol partitions the GEQ matrix
into 2s monochromatic subrectangles. Now consider the 2n diagonal entries, which correspond
to some inputs where GEQ is 1. Since 2s < 2n, by the pigeonhole principle there must exist a
subrectangle that contains at least 2 different diagonal inputs. That is, there must be a transcript
(corresponding to a subrectangle) and two diagonal inputs, w = uu and w′ = vv that land in the
same subrectangle. Now since it is a subrectangle, the inputs uv and vu must also lie in this same
subrectangle and therefore the protocol must give the same answer on all four inputs (uu, vv, uv,
and vu). Assume without loss of generality that u < v. Then the inputs uu, vv, and vu should
all be accepted, but on the other hand the input uv should be rejected. Therefore we reach a
contradiction since the protocol must make a mistake on one of these inputs. ■

Final Remarks. This wraps up our whirlwind study of lower bounds for showing that specific
languages are not regular, via techniques from communication complexity. To conclude, we want to
mention that the property of being a regular language is extremely rare! There is counting argument
showing that almost all languages L ⊆ {0, 1}∗ are not regular. The counting argument at a high
level is based on the observation that any regular language has a finite-length description by a
DFA. Therefore the class of regular languages is countable – they can be ordered, and enumerated.
On the other hand, the class of all languages if not countable. This counting argument shows
that nearly all languages are not regular, but it is a nonconstructive argument in that we can’t
extract from the argument any particular language that is not regular. In contrast the lower bounds
presented earlier are all constructive: we gave explicit natural languages and proved that they are
not regular (which requires substantially more work in general). We will study countable versus
uncountable later in the course when we discuss Turing Machines and computable languages. Like
regular languages, the class of computable languages is very rare, again by a very similar counting
argument.

6



000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 7: Round 3 of EQUALITY Protocol

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 8: Last round of EQUALITY Protocol

7


	Some formal definitions
	Low Cost Communication Implies the Matrix is Simple
	A two-party lower bound for EQ
	A Communication Lower Bound for GEQ

