
CS Theory (Fall ’25) Fall, 2025

Lecture Notes: Proving a Language is Not Regular

Instructor: Toniann Pitassi

In this lecture we will give a fairly simple argument showing that there exist languages that are not

regular. That is, we will give some specific language and prove that it cannot be computed by any

DFA, and therefore by the equivalences we have shown, it follows that: this language also cannot be

computed by any NFA, and cannot be expressed by a regular expression, and cannot be recognized by

any constant-space streaming algorithm.

Definition 1. Let EQ = {w ∈ {0, 1}∗ | w = uu}. That is, EQ is the set of all strings such that the first

half of the string is equal to the second half of the string.

Theorem 2. EQ is not regular.

We will first give a direct argument showing that no DFA can accept EQ. Then we will give a more

general and abstract treatment of the lower bound argument, which will hopefully give intuition for how

and when this type of argument can be applied.

Intuition for proof. Intuitively, since a DFA can only read each symbol once, it seems like it would

have to remember the first n symbols exactly in order to determine if the first half equals the second half.

Formally this means that there needs to be 2n distinct states, one for each string of length n. If not then

(by the pigeonhole principle) there would be two different strings, u and v, each of length n that lead to

the same state, call it state q. But this would cause an error since when reading the second half of the

string starting at q, we can’t distinguish whether it equals the first string u or the second string v. We

now proceed to the formal argument.

Proof. Assume for sake of contradiction that there is a DFA, M = (Q,Σ = {0, 1}, q0, F, δ) that accepts

EQ, and let |Q| = S; that is, the number of states in M is S. First a bit of notation. For any state q ∈ Q

and string w ∈ {0, 1}∗, let δ(q, w) be the state that M will be in if we run M on the string w, starting

the computation in state q. (Note that q may not be the actual start state of M , but still this definition

makes sense.)

We will consider what happens when we run M starting in the start state q0 on inputs of length

n, where n satisfies 2n > S. Since there are 2n inputs of length n and 2n > S, by the pigeonhole

principle, there must exist some state q ∈ Q and two different inputs u 6= v, |u| = |v| = n such that

δ(q0, u) = δ(q0, v) = q. Now since uu ∈ L, when we run M on uu starting at q0, it will be in q after

reading the first u (by the above argument), and then it will end in an accept state when we further

process the second copy of u, starting in state q. In other words, we must have δ(q, u) ∈ F since the

string uu should be accepted by M . By similar reasoning, since vv ∈ L, δ(q, v) ∈ F .

But on the other hand, the string uv must also end up in an accept state, since δ(q0, u) = q, and

δ(q, v) ∈ F . But since uv is not in L, we have reached a contradiction.

1

1 One-way Communication Model

We will now given an abstration of the above lower bound proving that EQ is not regular (and therefore

also not recognizable by any constant-space streaming algorithm). The abstraction is via the notion of

a communication complexity protocol. We will see that for any language L, if it has an S = 2s state

DFA that accepts it, then there is a one-way communication protocol of complexity s that recognizes

L. Then using the same argument that we gave above (for proving a lower bound for EQ, we will show

that there is no one-way communication protocol for EQ of constant cost. Putting these two things

together gives a more abstract proof that EQ is not regular. While this may seem like an unnecessarily

complicated argument (given that we already proved that EQ is not regular with a one-paragraph proof),

by abstracting the argument in this way, we will gain intuition about how to prove that other languages

are not regular. Another reason to abstract the argument is because communication complexity is a

beautiful concept. It is a natural generalization of constant-space algorithms that can only read the

input once (e.g., DFAs and constant-space streaming algorithms), and as we will see, it has literally

hundreds of applications throughout computer science.

Imagine two people, Alice and Bob, who want to compute some joint function or property of their

inputs. For example, suppose Alice has an input x ∈ {0, 1}n and Bob also has an input y ∈ {0, 1}n.

Say they want to know if their inputs are equal. Now Alice and Bob live far apart and they don’t have

any way to communicate cheaply. In a one-way protocol (from Alice to Bob), Alice gets to send a single

message, m(x), about her input to Bob. Of course she could simply send Bob x and then he could figure

out whether or not x = y. But we want to design a better protocol, where she sends a much shorter

message, if possible.

More formally, we have the following definitions of a communication problem associated with a lan-

guage.

Definition 3. 1. Given a string w ∈ {0, 1}∗, we will first partition w into two parts, w = wAwB. In

the default partitioning, wA and wB have roughly equal length; that is, wA consists of the first

d|w|/2e symbols of w, and wB consists of the last b|w|/2c bits of w. However sometimes we may

want to consider a more imbalanced partition of the input w. If we do not specify the partition,

then we will use the default partitioning.

2. Given a language L over {0, 1}, the associated decision problem is defined to be fL(w) = 1 if w ∈ L,

and fL(w) = 0 otherwise. Now we define the communication problem associated with L to be: on

input w ∈ {0, 1}∗, Alice gets wA and Bob gets wB and they want to output fL(wAwB). 1

3. A one-way communication protocol for solving fL is defined as follows. 2

Given an input w = wAwB ∈ {0, 1}∗, Alice is given the string wA and Bob receives the string wB.

The protocol proceeds in two phases. In the first phase, Alice computes a message, m(wA) ∈ {0, 1}∗,
and sends it to Bob. Then in the second phase, Bob outputs a bit g(m(wA), wB) that depends on

Alice’s message and his input wB. We say that the protocol (given by the two functions m and

g) solves fL if for every w = wAwB, Bob’s output bit g(m(wA), wB) is equal to fL(wAwB). The

1Note that for each partition we actually get different communication problems. For now and for most our discussion,
we will use the default partition.

2We may sometimes write fL(uv) as fL(u, v) to make it more clear that when solving fL via a one-way communication
protocol, Alice gets the first half u and Bob gets the second half, v, of the input.

2

complexity of the protocol is the maximal length of Alices message m(wA), where the maximum is

over all inputs w ∈ {0, 1}n.

Example 4. Suppose that L = PARITY, which contains the set of all strings that contain an odd number

of 1’s. Then fPARITY(w) is 1 if w contains an odd number of 1’s, and fL is 0 if w contains an even

number of 1’s. Then there a simple protocol where Alice only sends a message of length one! Alice on

wA computes the parity of the number of 1’s in wA and sends this single bit to Bob. Bob then computes

the parity of the number of 1’s on wB and adds this to Alice’s bit. If this is odd then Bob knows that

fPARITY(wA, wB) = 1 and otherwise fPARITY(wA, wB) = 0.

Example 5. Suppose that L = EQ. It will be useful view the associated communication problem fEQ on

inputs w of length 2n as an N -by-N matrix, where there are N = 2n rows corresponding to all possible

values of the first half wA (these are all possible inputs that Alice can get on inputs of length 2n), and

similarly there are N = 2n columns corresponding to all possible values for the second half wB (the set of

all possible inputs for Bob). An entry (wA, wB) of the matrix corresponds to the input w = wAwB, and

this entry is labelled 1 if this string w is in EQ, and otherwise the entry is labelled 0. Note that the matrix

is nothing other than the identity matrix! We will see next that any one-way protocol this communication

matrix requires maximal communication.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 1: Communication Matrix for EQUALITY

Theorem 6. Any one-way protocol for EQ on inputs of length 2n requires communication complexity n.

Proof. Assume for sake of contradiction that there is a one-way protocol for EQ on inputs of length 2n

of communication complexity s < n. Let X = {x | x ∈ {0, 1}n} be the set of all possible inputs for Alice,

and let S = 2s. Since there are S = 2s possible messages of length s, the message that Alice sends to Bob

yields a partition of Alice’s inputs X into 2s groups. (For each message α ∈ {0, 1}s, the group of inputs

associated with m is the set of x ∈ X such that m(x) = α.) Since s < n, S = 2s < 2n = |X|, and therefore

3

there exists a message α ∈ {0, 1}s and two different inputs u, v ∈ {0, 1}n, such that m(u) = m(v) = α;

that is, there are two different inputs u, v for Alice such that Alice sends the same message on both u

and v. Now if Bob’s input was equal to u, then since EQ(uu) = 1, this implies that g(α, u) = 1 and

similarly since EQ(vv) = 1 this also implies that g(α, v) = 1. But on the other hand, if Alice’s input is

u and Bob’s input is v then the protocol will give the wrong answer (it will output 1 but since u 6= v it

should output 0).

The picture below illustrates a one-way protocol for EQ where n = 3. As in the picture above,

there are N = 2n rows corresponding to all possible inputs for Alice, and similarly there are N columns

corresponding to all possible inputs for Bob. In this protocol, Alice sends messages of length 2 (so s = 2),

so there are S = 22 = 4 possible messages. This partitions her 8 possible inputs (the rows of the matrix)

into 4 different subsets, indicated by the dark blue horizontal lines. Let’s label the first subset (consisting

of just 000) by the message 00, the second subset (containg 001,010,011) by the message 01, the third

subset by the message 10, and the last subset by the message 11. Since S < N we can see that there

exists a subset containing more than one Alice input. For example, in this protocol Alice will send the

same message, 01, on all three inputs (001,010,011) in the second subset. Now this leads to an incorrect

protocol for EQ: Bob’s function g depends on his input v and Alice’s message. So if she sends the message

01, he only learns that her input is one of 001,010,011, and not which of these three inputs she has. So

when he has one of these three inputs as well, he cannot distinguish whether his input is equal to hers or

not.

We also want to point out that while this picture is just an illustration of one example, it can be

viewed as general up to permutations of the rows. That is, if Alice’s messages have length s, it partitions

the rows into disjoint subsets although not necessarily consecutive subsets as in the picture. But we can

permute the rows/colums so that under this permutation we get a picture like the one below.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Figure 2: One-way Protocol for EQUALITY

Finally we show that a non-constant one-way communication lower bound implies that the associated

language is not regular.

4

Theorem 7. Let L be a language such that any one-way communication protocol for L requires Ω(1)

(i.e., super-constant) communication complexity. Then L is not regular.

Proof. Assume for sake of contradiction that L is regular, and therefore there is a DFA M that accepts

exactly the strings in L. Assume that M has S states, and choose n such that 2n > S. Now we will show

that using M , we can construct a one-way communication protocol for L on inputs of length 2n of cost

s < n where S = 2s, which contradicts the above lower bound on the one-way communication complexity

of L.

The protocol is as follows. First, associate the S states q1, . . . , qS of the DFA M with their binary

representation. On input xy, where Alice gets x and Bob gets y, Alice runs M on x and sends Bob the

name of the state that M ends up in when run on input x. Since there are S states, the length of her

message is s = dlogSe. Now Bob runs M on his input y, starting the computation at the state that Alice

sent – that is, knowing the state that x ended in, Bob continues to simulate the computation of M on

the second half of the input xy. If his simulation ends in an accept state, he answers ‘1’ and otherwise

he answers ‘0’.

Combining the above two theorems we have:

Corollary 8. The language EQ is not regular.

Note that in the one-way communication model we always fixed the partition of w into two roughly

equal sized pieces w = xy, where Alice received the first half and Bob the second half. What would

happen if we allowed any partition of the symbols of w into two pieces, not necessarily consecutive ones?

Does a DFA for a language still imply a one-way protocol under an arbitrary partition? Can you give a

counterexample, showing a partition where EQ is easy.

5

	One-way Communication Model

