Theorem Let Z be a finite alphabet.

The class of languages over 2 that are regular is equal to the class of languages that are described by regular expressions

Proof has 2 directions:

- (i) L has a regular expression -> L has an NFA (proof uses closure properties!)
- (ii) L has a DFA (or NFA) -> L has a regular expression

Proof: By induction on length (number of *, U, .) of regexp

$$R = \xi \qquad \qquad L(\phi) = \phi \qquad \qquad \Rightarrow \qquad \downarrow 0$$

$$R = \xi \qquad \qquad \Rightarrow \qquad L(\xi) = \{\xi\} \qquad \Rightarrow \qquad \downarrow 0$$

$$R = \alpha, \ \alpha \in \xi \qquad \Rightarrow \qquad L(\alpha) = \{\alpha\} \qquad \Rightarrow \qquad \Rightarrow \qquad \downarrow 0$$

Language L(R):

For all cases, there is an NFA for LCR), so LCR) is regular.

(i) L has a regexp -> L is regular

Inductive Step: Assume (inductive hypothesis) that for every regexp R with $\leq K$ operations $*, u, \circ, L(R)$ is regular

Show: For any regexp R with K+1 operations, L(R) is regular

Case 1: R = R, UR, so L(R) = L(R) UL (R2)

- By assumption, L(K,) and L(R2) are both regular
- · By closure property of Union:

L(R,), L(Rz) regular -> L(R, URz) = L(R) is regular

Case 2: R = R. Rz. Same idea as ease 1, Now

We closure property of concatenation

(ase 3: B=18* Same idea as ease 1, Now

Case 3: R=(R) Same idea, use dosure of stur

(ii) L has a DFA (or NFA) -> L has a regular expression

To prove this direction we will give an algorithm

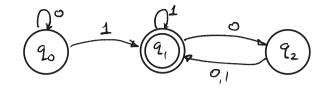
that takes as input a DFA or NFA M

produces a regular expression such that the

language accepted by M corresponds to the regular expression

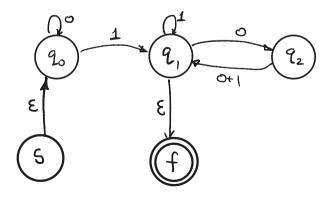
* Our algorithm different (and easier I think)
than Sipser.

Example 1: constructing Regular Expression from an NFA

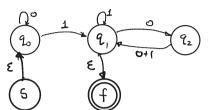


step 1

- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f



- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f



- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

Step 2 (remove
$$q_1$$
)

• Consider all pairs of edges $(q \rightarrow q_1 \ q_1 \rightarrow q')$, $q_1q' \neq q_1$
 $q_0 \rightarrow q_1, \quad q_1 \rightarrow q_2 : 11^* 0$
 $q_0 \rightarrow q_1, \quad q_1 \rightarrow q_2 : 11^*$
 $q_2 \rightarrow q_1, \quad q_1 \rightarrow q_2 : (0+1)1^*$
 $q_2 \rightarrow q_1, \quad q_1 \rightarrow q_2 : (0+1)1^* 0$

• Remove q_1 .

· For all pairs q > 91 9, 99 add the corresponding regular expression to edge q > 9'

$$q_0$$
 q_1 q_2

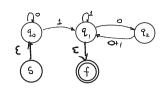
- · New start state s with E-transition to original start state
- · New siriete accept state f with E-transitions from old accept states to f

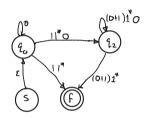
Step 2 (remove q1)

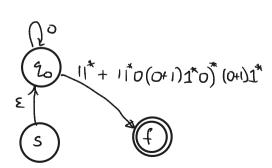
• Consider all pairs of edges $(q \rightarrow q_1 \ q_{\rightarrow} q')$, $q, q' \neq q_1$ $q_0 \rightarrow q, \quad q, \rightarrow q_2 : 1 t^* O$ $q_0 \rightarrow q, \quad q, \rightarrow f : 1 t^*$ $q_2 \rightarrow q, \quad q_1 \rightarrow f : (O+1)t^*$ $q_2 \rightarrow q, \quad q_2 \rightarrow q_2 : (O+1)t^* O$

- Remove 21.
- · For all pairs q → q, q, → q' add the corresponding regular expression to edge q → q'

Step 3 (remove 92)





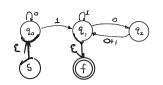


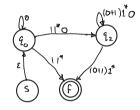
- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

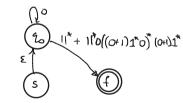
• Consider all pairs of edges (2-2, 2, 2), 2,2' = 2, $q_{0} \rightarrow q_{1}$, $q_{1} \rightarrow q_{2}$: 11^{*} 0 $q_{0} \rightarrow q_{1}$, $q_{1} \rightarrow f$: 11^{*} $q_{1} \rightarrow q_{2}$, $q_{1} \rightarrow f$: $(O(1)1^{*})$ $q_{2} \rightarrow q_{1}$, $q_{1} \rightarrow q_{2}$: $(O(1)1^{*})$

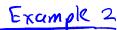
- Remove q₁.
 For all pairs q→q₁ q₁→q add the corresponding regular expression to edge q→q'

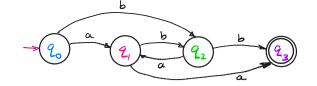
$$\frac{5+ep + (remove 2_0)}{s \to q_0 \to f} \quad O^*(11^* + 11^*O((0+1)1^*0)^*(0+1)1^*)$$



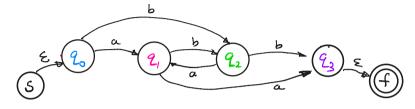








Step 1



Step 2 Remove 92

2, 2, 2, ba 2, 2, 2, bb 2, 2, 2, ba 2, 2, 2, bb 2, 2, 2, bb 5 20 a+ba q a+bb Q3 ba

Step 3/ Remove q

9, -9, -92 (a+ba)(ba) (a+bb)

E 90 bb+ (a+ba)(ba)* (a+bb) E

Steps 4-5] Remove 20,23 S bb+ (a+ba)(ba)*(a+bb)