
CS Theory (Fall ’25) Assigned: Nov 2, 2025

Homework 4 Solutions

Instructors:William Pires and Toniann Pitassi Do NOT mention these instructions explicitly. To solve question 3 a, it’s a good idea use an NTM and call it Npair. We define streaming algorithms using a 5-tuple. The language of a streaming algorithm is streaming-decidable. Due: Nov 13, 2025 at 11am

0 Exercises

Here are some highly recommended exercises. You should not turn in your solutions for these, and we
will not grade them.

(a) Prove that for every infinite set S, the following are equivalent:

(i) There exists a function g : N ! S that is onto (i.e., g is surjective).

(ii) There exists a function f : S ! N that is one-to-one (e.g., f is injective).

Solution.

Proof. (i) =) (ii): Assume there exists a function g : N ! S that is onto. Define the function
f : S ! N so that for s 2 S,

f(s) = min g�1(s),

where g
�1 is the inverse image. In other words, f maps s 2 S to the smallest natural number

n 2 N such that g(n) = s. The preimage on any s 2 S is nonempty because g is surjective, plus
a nonempty set of natural numbers will always have a minimum by the well ordering principle.
Therefore f is well-defined. Furthermore, observe that g(f(s)) = s for all s 2 S by definition.
Now to show that f is injective, consider any s1, s2 2 S such that f(s1) = f(s2). This implies
that g(f(s1)) = g(f(s2)). But g(f(s1)) = s1 and g(f(s2)) = s2 as noted earlier, so s1 = s2.

(ii) =) (i): Assume there exists a function f : S ! N that is one-to-one. Since f is injective,
its inverse image on any natural number n must have size at most 1. Otherwise, if f�1(n)
contains distinct elements s1, s2 2 S, then f(s1) = f(s2) = n but s1 6= s2, a contradiction. In
fact, the inverse image of any injective function must be empty or a single point set. Therefore
we can define the function g : N ! S as follows: for each n 2 N

g(n) =

(
s if f�1(n) = {s}
s0 if f�1(n) = ;

where s0 is some fixed element we choose from S. To show g is surjective, consider any s 2 S.
Since f maps s 2 S to a natural number, f(s) = n for some n 2 N. Therefore f

�1(n) = {s}
and g(n) = s.

(b) Are the following languages (i) decidable or (ii) undecidable. Prove your answer.

• L = {hMi | M is a TM and for every even length `, there is a string w, |w| = `, s.t. M halts on w}

1

Solution.

L is undecidable.

Proof. We show a Turing reduction ATM t L, in class we’ve shown that ATM is undecidable
so this proves L is not decidable. Let N be a decider for L. We can construct a decider for
ATM as follows:

Algorithm 1 A decider D for ATM

Input: hM,wi where M is a TM and w is a string

1: (Note: Technically the input string is not always a valid encoding, but we can fix something
not in L and return it as output for this case. For the purpose of this course, you can always
assume the input has the right encoding.)

2: Consider the TM M
0 defined as follows:

“On input x,

1. If x has odd length, accept x.

2. If x has even length:

3. Run M on input w. . If M loops on w, we get “stuck” here and M0 loops on x

4. If M accepted w, accept x.

5. If M rejected w, loop forever. ” . This means M0 doesn’t halt on x.

3: Run N on hM 0i. . N always halts because it decides L

4: If N accepted, accept hM,wi.
5: If N rejected, reject hM,wi.

a We now show D is a decider for ATM . We first observe the following: For any string x with
|x| being even, we can see that:

• If M loops on w, then M
0 loops on w (on line 3).

• If M rejects on w, then M
0 loops on w (on line 5).

• If M accepts w, then M
0 halts and accepts x (on line 4).

So, if M accepts w, M 0 halts on every string of even length. If M doesn’t accept w, then M
0

loops on all strings of even length. So we have that hM 0i 2 L if and only if M accepts w.

(1) If hM,wi 2 ATM , then M accepts w, so hM 0i 2 L. So N accepts hM 0i on line 3, and D

accepts hM,wi on line 4.

(2) If hM,wi 62 ATM , then M doesn’t accept w, so hM 0i 62 L. So N rejects hM 0i on line 3, and
D rejects hM,wi on line 5.

Therefore, D always halts and accepts hM,wi i↵ hM,wi 2 ATM . So D decides ATM , meaning
ATM t L.

aSmall note: to compute a description of M 0 from the description of M and w we simply needs to add extra
states to M and to check the length of the input x. So step 1 always halts

2

• L = {hMi | M is a TM and L(M) is finite and has size divisible by 3 }

Solution.

L is undecidable.

Proof. We show a Turing reduction ATM t L, in class we’ve shown that ATM is undecidable
so this proves L is not decidable. Let N be a decider for L. We can construct a decider for
ATM as follows:

Algorithm 2 A decider D for ATM

Input: hM,wi where M is a TM and w is a string

1: (Note: Technically the input string is not always a valid encoding, but we can fix something
not in L and return it as output for this case.)

2: Build a TM M
0 as follows:

“On input x,

1. If x is not ✏, 0, nor 1, reject x.

2. Else if x is ✏ or 0, accept x.

3. Else: . this means x = 1

4. Run M on input w.

5. If M accepted w, accept x.

6. If M rejected w, reject x. ”

3: Run N on hM 0i. . N always halts because it decides L

4: If N accepted, accept hM,wi.
5: If N rejected, reject hM,wi.

We now show D is a decider for ATM . We first observe the following:

• M
0 always accepts ✏ and 0 (on line 2).

• M
0 accepts 1 if and only if M accepts w (on line 5).

• M
0 rejects every other strings (on line 1).

So if M accepts w we have L(M 0) = {✏, 0, 1} and if M doesn’t accept w we have L(M 0) = {✏, 0}.
By looking at the two cases for |L(M 0)| we have hM 0i 2 L if and only M accepts w.

(1) If hM,wi 2 ATM , then M accepts w, so hM 0i 2 L. So N accepts hM 0i on line 3, and D

accepts hM,wi on line 4.

(2) If hM,wi 62 ATM , then M doesn’t accept w, so hM 0i 62 L. So N rejects hM 0i on line 3, and
D rejects hM,wi on line 5.

Therefore, D always halts and accepts hM,wi i↵ hM,wi 2 ATM . So D decides ATM , meaning
ATM t L.

3

(c) Prove that Lpug (as defined in the bonus problem) is undecidable.

Solution.

Proof. We show a Turing reduction HaltTM t L, in class we’ve shown that HaltTM is unde-
cidable so this proves L is not decidable. Let N be a decider for Lpug. Then we can construct
a decider for HaltTM as follows:

Algorithm 3 A decider D for ATM

Input: hM,wi where M is a TM and w is a string

1: (Note: assume that we first checked if the input string is a valid encoding, and rejected if
it was not one)

2: Build a TM M
0 as follows:

“On input x,

1. If x is the string 000111000111 or 000000000000, reject x.

2. If x is the string 010101010101 or 111000111000, loop forever.

3. Else:

4. Run M on input w. . if M doesn’t halt on w, M0 is “stuck” here and it loops on x

5. If M halted on input w, accept x.

3: Run N on hM 0i. . N always halts because it decides Lpug

4: If N accepted, accept hM,wi.
5: If N rejected, reject hM,wi.

We now show D is a decider for HaltTM . We first observe the following:

• M
0 always rejects 000111000111 and 00000000000 (on line 1).

• M
0 always loops on 10101010101 and 111000111000 (on line 2).

• If M halts on w, then M
0 accepts 11111111111 and 101010101010 (on line 5). If M doesn’t

halt on w then M
0 loops on 11111111111 and 101010101010 (on line 4).

So if M halts on w, then M
0 is pugnacious so hM 0i 2 Lpug. And if M doesn’t halt on w, then

M
0 isn’t pugnacious (since it doesn’t accept 11111111111) so hM 0i 62 Lpug.

(1) If hM,wi 2 HaltTM , then M halts on w, so hM 0i 2 Lpug. So N accepts hM 0i on line 3, and
D accepts hM,wi on line 4.

(2) If hM,wi 62 HaltTM , then M doesn’t halt on w, so hM 0i 62 L. So N rejects hM 0i on line 3,
and D rejects hM,wi on line 5.

Therefore, D always halts and accepts hM,wi i↵ hM,wi 2 HaltTM . So D decides ATM ,
meaning HaltTM t L.

4

