CS Theory (Fall ’25) Assigned: Nov 2, 2025

Homework 4 Solutions

Instructors: William Pires and Toniann Pitassi Due: Nov 13, 2025 at 11lam

0 Exercises

Here are some highly recommended exercises. You should not turn in your solutions for these, and we
will not grade them.

(a) Prove that for every infinite set S, the following are equivalent:

(i) There exists a function g : N — S that is onto (i.e., g is surjective).

(ii) There exists a function f : S — N that is one-to-one (e.g., f is injective).

Proof. (i) = (ii): Assume there exists a function g : N — S that is onto. Define the function
f 8 — Nso that for s € S,
f(s) = ming~'(s),

where g7 is the inverse image. In other words, f maps s € S to the smallest natural number
n € N such that g(n) = s. The preimage on any s € S is nonempty because g is surjective, plus
a nonempty set of natural numbers will always have a minimum by the well ordering principle.
Therefore f is well-defined. Furthermore, observe that g(f(s)) = s for all s € S by definition.
Now to show that f is injective, consider any s1, sy € S such that f(s1) = f(s2). This implies
that g(f(s1)) = g(f(s2)). But g(f(s1)) = s1 and g(f(s2)) = s2 as noted earlier, so s; = so.
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(i) = (i): Assume there exists a function f : S — N that is one-to-one. Since f is injective,
its inverse image on any natural number n must have size at most 1. Otherwise, if f~!(n)
contains distinct elements s1,s9 € S, then f(s1) = f(s2) = n but s; # s9, a contradiction. In
fact, the inverse image of any injective function must be empty or a single point set. Therefore
we can define the function g : N — S as follows: for each n € N

s if f7Y(n)={s
gmy=1° W=
so if f7H(n) =10
where sg is some fixed element we choose from S. To show g is surjective, consider any s € S.
Since f maps s € S to a natural number, f(s) = n for some n € N. Therefore f~!(n) = {s}
and g(n) = s. O
(b) Are the following languages (i) decidable or (ii) undecidable. Prove your answer.

o L ={(M)| M isaTM and for every even length ¢, there is a string w, |w| = ¢, s.t. M halts on w}



L is undecidable.

Proof. We show a Turing reduction Arp; <; L, in class we've shown that Arjs is undecidable
so this proves L is not decidable. Let N be a decider for L. We can construct a decider for
Arpr as follows:

Algorithm 1 A decider D for Arps
Input: (M, w) where M is a TM and w is a string

1: (Note: Technically the input string is not always a valid encoding, but we can fix something
not in L and return it as output for this case. For the purpose of this course, you can always
assume the input has the right encoding. )

2: Consider the TM M’ defined as follows:

“On input =z,

1. If x has odd length, accept x.
2. If x has even length:

3. Run M on lnput w. > 1t M loops on w, we get “stuck” here and M’ loops on x
4. If M accepted w, accept x.
5. It M rejected w, loop forever. ” D> This means M’ doesn’t halt on z.

& Run N on <M/> > N always halts because it decides L
4: If N accepted, accept (M, w).
5. If N rejected, reject (M, w).

[] We now show D is a decider for Apps. We first observe the following: For any string  with
|z| being even, we can see that:

e If M loops on w, then M’ loops on w (on line 3).
o If M rejects on w, then M’ loops on w (on line 5).

o If M accepts w, then M’ halts and accepts x (on line 4).

So, if M accepts w, M’ halts on every string of even length. If M doesn’t accept w, then M’
loops on all strings of even length. So we have that (M’) € L if and only if M accepts w.

(1) If (M,w) € App, then M accepts w, so (M') € L. So N accepts (M’) on line 3, and D
accepts (M, w) on line 4.

(2) If (M, w) & Appr, then M doesn’t accept w, so (M') & L. So N rejects (M') on line 3, and
D rejects (M, w) on line 5.

Therefore, D always halts and accepts (M, w) iff (M, w) € Appr. So D decides Appy, meaning
Aty <¢ L. O

“Small note: to compute a description of M’ from the description of M and w we simply needs to add extra
states to M and to check the length of the input . So step 1 always halts



o L={(M)| MisaTM and L(M) is finite and has size divisible by 3 }

L is undecidable.

Proof. We show a Turing reduction App; <; L, in class we’ve shown that Apjs is undecidable
so this proves L is not decidable. Let N be a decider for L. We can construct a decider for
Apy as follows:

Algorithm 2 A decider D for Arjs
Input: (M, w) where M is a TM and w is a string

1: (Note: Technically the input string is not always a valid encoding, but we can fix something
not in L and return it as output for this case.)
2: Build a TM M’ as follows:
“On input x,
1. If z is not €, 0, nor 1, reject x.

2. Else if x is € or 0, accept x.

3. Else: D> this means z = 1
4. Run M on input w.
5. If M accepted w, accept z.
6. If M rejected w, reject x. 7
3: Run N on (M’} B i olweys bl beeonws & deeides L

4: If N accepted, accept (M, w).
5. If N rejected, reject (M, w).

We now show D is a decider for A7p;. We first observe the following:
o M’ always accepts € and 0 (on line 2).
o M’ accepts 1 if and only if M accepts w (on line 5).
e M’ rejects every other strings (on line 1).

So if M accepts w we have L(M') = {¢,0,1} and if M doesn’t accept w we have L(M') = {¢,0}.
By looking at the two cases for |L(M')| we have (M') € L if and only M accepts w.

(1) If (M,w) € Appr, then M accepts w, so (M') € L. So N accepts (M') on line 3, and D
accepts (M, w) on line 4.

(2) If (M, w) & Arpr, then M doesn’t accept w, so (M') € L. So N rejects (M') on line 3, and
D rejects (M, w) on line 5.

Therefore, D always halts and accepts (M, w) iff (M, w) € Arpr. So D decides Arps, meaning
Arym <¢ L. O



(c) Prove that Ly, (as defined in the bonus problem) is undecidable.

Proof. We show a Turing reduction Haltrys < L, in class we’ve shown that Haltpy, is unde-
cidable so this proves L is not decidable. Let N be a decider for Ly,,. Then we can construct
a decider for Haltpys as follows:

Algorithm 3 A decider D for Ay
Input: (M, w) where M is a TM and w is a string

1: (Note: assume that we first checked if the input string is a valid encoding, and rejected if
it was not one)
2: Build a TM M’ as follows:
“On input =z,
1. If z is the string 000111000111 or 000000000000, reject x.
2. If z is the string 010101010101 or 111000111000, loop forever.

3. Else:
4. Run M on input w. D if M doesn’t halt on w, M’ is “stuck” here and it loops on @
5. If M halted on input w, accept x.

3: Run N on (M’> D> N always halts because it decides Lpug

4: If N accepted, accept (M, w).
5. If N rejected, reject (M, w).

We now show D is a decider for Haltyy;. We first observe the following:
e M’ always rejects 000111000111 and 00000000000 (on line 1).
e M’ always loops on 10101010101 and 111000111000 (on line 2).

e If M halts on w, then M’ accepts 11111111111 and 101010101010 (on line 5). If M doesn’t
halt on w then M’ loops on 11111111111 and 101010101010 (on line 4).

So if M halts on w, then M’ is pugnacious so (M’) € Lp,y. And if M doesn’t halt on w, then
M’ isn’t pugnacious (since it doesn’t accept 11111111111) so (M') & Lpy,.

1) If (M, w) € Haltrys, then M halts on w, so (M') € L,,,. So N accepts (M') on line 3, and
pug
D accepts (M, w) on line 4.

(2) If (M, w) & Haltrps, then M doesn’t halt on w, so (M') & L. So N rejects (M') on line 3,
and D rejects (M, w) on line 5.

Therefore, D always halts and accepts (M, w) iff (M,w) € Haltrpy. So D decides Aray,
meaning Haltryr <; L. O



