
CS Theory (Spring ’25) September 23, 2025

Lecture Note: Asymptotic Notation

Instructor:Toniann Pitassi

We have been studying different models of computation, including DFAs, NFAs and regular
expressions. So far we focus on whether the model can solve a problem, and we haven’t talked
about how efficient the model can solve the problem. For example, we have seen the construction
of a DFA from an NFA. Although they recognize the same language, it has a huge blow-up in the
number of states (going from a NFA with k states can give a DFA with 2k states). Starting now,
we will not only focus on whether a computation model can, but also how efficient it can solve a
problem.

1 Big-O Notation

The exact running time of an algorithm is often complicated, but we usually only care about an
estimate. We use big-O notation to capture estimates. It helps us to understand how a function
behaves on large inputs. We usually care more about large inputs, because even an inefficient
algorithm can be fast on small inputs.

Example 1. f(n) := 6n3 + 2n2 + 20n+ 45 = O(n3).

For polynomials, we consider only the highest order term and disregard coefficients to get an
estimation in big-O form. 1

Below we give a general definition for big-O notation.

Definition 2. Let f, g : N → R+ be functions (positive integers to positive reals). We say f(n) =
O(g(n)) if there exist constants c, n0 > 0 such that for every n ≥ n0, we have f(n) ≤ c · g(n).

In the definition, we have the coefficient c so that we don’t need to care about the coefficients
in f , and we have n ≥ n0 so that we only need to care about big enough inputs.
Recall Example 1. Let f(n) = 6n3 + 2n2 + 20n+ 45, g(n) = n3. We can choose c = 9 and n0 = 45
to fit in the above definition. 2 If n ≥ 45, then f(n) = 6n3 + 2n2 + 20n+ 45. Since 2 ≤ n, 20 ≤ n
and 45 ≤ n, we have

f(n) ≤ 6n3 + n · n2 + n · n+ n = 7n3 + n2 + n ≤ 7n3 + n3 + n3 = 9n3.

Example 3. f(n) := 6n3 + 2n2 + 20n+ 45 = O(n4). Formally, if we pick c = 9 and n0 = 45, then
for all n ≥ 45, we know f(n) ≤ 9 · n3 ≤ 9 · n4.

Example 4. f(n) := 6n3 + 2n2 + 20n+ 45 ̸= O(n2), because 6n3 grows faster than n2.
Here’s a more formal proof. Assume for contradiction that there exists c and n0 such that for

all n ≥ n0 we have f(n) ≤ cn2. 6n3 + 2n2 + 20n+ 45 ≤ cn2 implies that, n3 ≤ cn2 which in turns

1For any polynomial p(n) = c0 + c1n+ c2n
2 + . . .+ ckn

k, we have p(n) ∈ O(nk).
2Although c = 7 should work, picking a larger c makes the proof easier. There are a lot of possible choices of c

and n0.

1



means n ≤ c. Hence, we can’t have f(n) ≤ cn2 for all n ≥ n0, contradiction.

Intuition: We have f(n) = O(g(n)) if there exists a constant c ≥ 0 such that limn→∞
f(n)
g(n) ≤ c.

3 Some simple examples:

• 2n2 + n = O(n2) since limn→∞
2n2+n

n2 = 2.

• 2n2 + n = O(n3) since limn→∞
2n2+n

n3 = 0.

• Finally 2n2 + n ̸= O(n) since limn→∞
2n2+n

n = ∞.

Example 5. log2(n) = O(loge(n)). This is because log2(n) =
loge(n)
loge(2)

.
In particular, when using O notation, we often don’t care so much what the base of the loga-

rithm is.

Example 6. log(n) ̸= O(log√n(n)), since log√n(n) = 2. And log(n) ̸= O(2).

Example 7. log2(n) ̸= O(loge loge(n)). Substituting k = loge(n) gives k ̸= O(log k), since k grows
faster than log(k).

Example 8. n · log logn = O(n · logn). It’s easy to see log log(n) = O(logn) and we multiply both
sides by n.

Example 9. log n ̸= O((log logn)1000). If we substitute k = log log(n), this becomes 2k ̸= O(k1000)
4

Example 10. log n = O((log log n)n). This is because log n = O(2n) = O((log log n)n) where we
used the fact that for n large enough log log(n) ≥ 2.

Example 11. 3n ̸= O(2n). One way to see this is that 3n/2n = (1.5)n → ∞ as n → ∞. Another

way is that 3n = 2log2(3)·n = (2n)log2(3). If we substitute 2n by k we have klog2(3) ̸∈ O(k).

Example 12. n
√
2n = O(2n). If we substitute 2n by k we have log2(k) ·

√
k = O(k). Which holds

since for k ≥ 2, log2(k) ≤
√
k.

Below we use big-O notation for arithmetic expressions.

Example 13.
∑n

i=1 i ≤
∑n

i=1 n = n2 = O(n2).

There are some cases where we care about the leading constant and want a bound on the re-
maining terms, we can also use big-O notation, in a way similar to the following.

Example 14.
∑n

i=1 i =
1
2n

2 + 1
2n = 1

2n
2 +O(n).

3This isn’t a formal definition for O. For instance this doesn’t work if g(n) = 0 for some n. But this a helpful way
to see if f(n) = O(g(n)).

4For any constant c, c′ > 0, nc always grows faster than log(n)c
′
. For instance: n0.3 ̸= O(log(n)1000)

2



Example 15.
∑n

i=1 2
i ≤

∑n
i=1O(2n) ≤ O(n2n) But this is not tight. Actually,

∑n
i=1 2

i =
2n+1 − 2 = O(2n).

Example 16. 3n = 2O(n). The reason is 3n = 2(log2 3)·n = 2O(n). Here O(n) is replacing an
“anonymous function” that is bounded by O(n). Compare to Example 11.

Example 17. n3 = 2O(logn). In fact, n3 = 23·log2 n.

2O(logn) captures all polynomials in n (with positive leading coefficient). For example, 2100·log2 n =
n100, 210000·log2 n = n10000. Similarly, nO(1) also captures all polynomials in n. We use poly(n) to
denote all polynomial in n.

Definition 18. We use poly(n) to denote all polynomial in n. Formally f(n) = poly(n) if there
exists constants c, n0 ≥ 0 such that for all n ≥ n0 we have f(n) ≤ nc.
In other words, poly(n) := nO(1).

Example 19. n · log2(n) = poly(n), since n · log n = O(n2) and n2 = poly(n).

Example 20. (logn)100 = poly(n). For n0 large enough, we have that for all n ≥ n0, log(n) ≤ n,
meaning (log n)100 ≤ n100. So (logn)100 = poly(n).

Example 21. (logn)log logn = poly(n). Note that log n = 2log logn, so

(log n)log logn = 2(log logn)
2
= 2O(log(n)) = nO(1).

If the last step seems mysterious, here’s more details. We know (log log(n))2 = O(log(n)). Hence,
there exists constants c, n0 such that for all n ≥ n0 we have: (log log(n))2 ≤ c log(n). Hence for
n ≥ n0 we have (log n)log logn ≤ 2c log(n) = nc. Since c is a constant this implies (log n)log logn =
poly(n).

Example 22.
(
n
4

)
= poly(n). This is because

(
n
4

)
= n(n−1)(n−2)(n−3)

24 = O(n4) and n4 = poly(n).

Example 23. It is not true that for all 0 ≤ k ≤ n,
(
n
k

)
= poly(n). We always have

(
n
k

)
= O(nk)

but k may depend on n and is not necessarily a constant. When k = n/2,(
n

n/2

)
=

n!

((n/2)!)2
≈ 2n√

πn/2
,

However, if k is a fixed constant, then
(
n
k

)
is a polynomial in n.

Here we formally prove it is false that
(
n
k

)
≤ poly(n) for all 0 ≤ k ≤ n. Proof. Assume to the

contrary that
(
n
k

)
≤ poly(n) for all k. Then,

n∑
k=0

(
n

k

)
≤

n∑
k=0

poly(n) ≤ n · poly(n) ≤ poly(n).

On the other hand,
∑n

k=0

(
n
k

)
= 2n. 5 This is not a poly(n), so there is a contradiction.

5This can be proved by using two ways to count the number of subsets of a size-n set. On one hand, for each
element, there are two possible choices: to be in the subset or not in the subset, so the total number of subsets is 2n.
On the other hand, the number of subsets of size k is

(
n
k

)
, so the total number is

∑n
k=0

(
n
k

)
.

3



2 Big-Ω Notation

Definition 24 (Big-Ω Notation). Let f, g : N → R+ be functions. We say f(n) = Ω(g(n)) if
g(n) = O(f(n))

Roughly speaking, using Ω means that f(n) grows at least as fast as g(n). Note that we can
have f(n) = O(g(n)) and also f(n) = Ω(g(n)).

Intuition: We have f(n) = Ω(g(n)) if limn→∞
f(n)
g(n) > 0.6 Some simple examples:

• 2n2 + n = Ω(n2) since limn→∞
2n2+n

n2 = 2.

• 2n2 + n = Ω(n) because limn→∞(2n2 + n)/n = ∞

• Finally 2n2 + n ̸∈ Ω(n3) since limn→∞(2n2 + n)/n3 = 0.

Example 25. f(n) = 6n3 + 2n2 + 20n + 45, then f(n) = Ω(n3) and f(n) = Ω(n2). However,
f(n) ̸= Ω(n4).

Example 26. loge(n) = Ω(log2(n)).

Example 27. n5 log(n) = Ω(n5) but n5 log(n) ̸= Ω(n6). The inquality is because limn→∞ n5 log(n)/n6 =
limn→∞ log(n)/n = 0

Example 28. 2n ̸= Ω(3n) and 2n = 3Ω(n). The inequality holds because 3n ̸∈ O(2n) (See example
11). For the equality we have 3n = 2log3(2)·n and log3(2) · n = Ω(n).

Example 29. n3 = 2Ω(logn). Why ? n3 = 23 log(n) and 3 log(n) = Ω(log(n)).

3 Little-o Notation

Definition 30 (Small-o). Let f, g : N → R+ be functions. We say f(n) = o(g(n)) if for all c > 0,
there exists n0 > 0 such that for all n ≥ n0, f(n) < cg(n).

Intuitively, o notation means that f(n) grows at a strictly smaller speed than g(n).

Theorem 31. Let f, g : N → R+ be functions. We can’t have both f(n) = o(g(n)) and f(n) =
Ω(g(n)).

Intuition: If limn→∞ f(n)/g(n) = 0, then f(n) = o(g(n)). 7 Some simple examples:

• 2n2 + n = o(n3) since limn→∞(2n2 + n)/n3 = 0.

• 2n2 + n ̸= o(n3) since limn→∞(2n2 + n)/n2 = 2

Example 32. f(n) = 6n3 + 2n2. Then f(n) = o(n4) but we have f(n) /∈ o(n3).

Example 33. 1√
n
= o(1). This is because for any c > 0, 1√

n
< c once we take n > 1

c2
. Another

way to view is because limn→∞
1√
n
= 0.

6This isn’t a formal definition for Ω. But it’s helpful to think about wether f(n) = Ω(g(n)) or not.
7Again, this isn’t a formal defintion.

4



Example 34.
n2

log n
= o(n2). Since limn→∞

n2

logn · 1
n2 = limn→∞

1
log(n) = 0.

Example 35. 2n = o(3n), but 2n ̸= 3o(n). For the first case, we have 2n/3n = (2/3)n and this goes
to 0 as n → ∞. For the inequality 3n = 2log2(3)·n and n ̸= o(log2(3) · n).

4 So why all this notation ?

O-notation: We use it to show upper bounds. For instance, we want to say “problem X can be
solved in time at most O(n log(n)).”

This means there exists an algorithm A for problem X which runs in time f(n) = O(n log(n)).

Ω-notation: We use it to show lower bounds. For instance, we want to say “Any algorithm solving
problem X can only be solved by an algorithm using at least Ω(n log(n)) time.”

This means there doesn’t exist an algorithm A, solving problem X which runs in time f(n)
where f(n) ̸= (n log(n)).

For instance, it’s well known that for sorting an array of n integers, an algorithm needs
Ω(n log(n)) time. On the other hand, Merge-Sort can sort an array in O(n log(n)) time.

o-notation: We use it to mean strictly less. For an instance an algorithm with o(n log(n)) time

could have running time: O(1), O(
√
n), O

(
n log(n)
log log(n)

)
.

We know that no algorithm for sorting an array of n elements can have running time o(n log(n))
since we know there is an Ω(n log(n)) lower bound.

Another view: It’s quite common in computer science to have the following scenario. There is
problem X, where after many years of research, the best algorithm runs in O(n3) time. But we
haven’t been able to improve that upper bound. So, we wonder, is o(n3) running time possible ?
I.e. can we get an asymptotically faster algorithm ? Or is there an Ω(n3) lower bound ? Meaning
no algorithm can be faster than O(n3). 8

5 Some common tricks

Here’s a list of common tricks used when trying to see if f(n) = O(g(n)).

• For any constants a, b > 1 we have loga(n) = O(logb(n)).

• Substituting log(n) with k. This is what we did in Example 7.

• Substituting 2f(x) with k. This is what we did in Example 11.

• Use n = 2log(n) (or nk = 2k·log(n)). More generally f(x) = 2log(f(x)). See for instance Examples
17, 21.

• We have that 2O(log(n)) = poly(n). See Example 21

• If f(n) = O(nc), where c is come constant, then f(n) = poly(n). See Examples 19 and 22.

8By Theorem 31: We can’t have both an Ω(f(n)) lower bound and o(f(n)) upper bound.

5



• If f(n) = O(g(n)) and f ′(n) = O(h(n)), then f(n) · f ′(n) = O(g(n) · h(n)).

• We have:

1. 1 = O(log(n))

2. log(n) = O(nc) for any constant c > 0

3. nc = O(nc+1) for any constant c ≥ 0.

4. nc = O(2n) for any constant c ≥ 0.

5. For any polynomial p(n) with highest power equal to nk, we have p(n) = O(nk).

6


	Big-O Notation
	Big- Notation
	Little-o Notation
	So why all this notation ?
	Some common tricks

